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ABSTRACT
In this paper we present ToMCAT (Theory-of-Mind for Cooper-
ative Agents in Teams), a new framework for generating ToM-
conditioned trajectories. It combines a meta-learning mechanism,
that performs ToM reasoning over teammates’ underlying goals
and future behavior, with a multiagent denoising-di!usion model,
that generates plans for an agent and its teammates conditioned
on both the agent’s goals and its teammates’ characteristics, as
computed via ToM. We implemented an online planning system
that dynamically samples new trajectories (replans) from the di!u-
sion model whenever it detects a divergence between a previously
generated plan and the current state of the world. We conducted
several experiments using ToMCAT in a simulated cooking domain.
Our results highlight the importance of the dynamic replanning
mechanism in reducing the usage of resources without sacri"cing
team performance. We also show that recent observations about
the world and teammates’ behavior collected by an agent over the
course of an episode combined with ToM inferences are crucial to
generate team-aware plans for dynamic adaptation to teammates,
especially when no prior information is provided about them.

KEYWORDS
Multiagent Learning, Meta-learning, Theory-of-Mind, Di!usion
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1 INTRODUCTION
Recent advances in Arti"cial Intelligence (AI) present an opportu-
nity to greatly improve collaboration between humans and comput-
ers to address complex tasks. Namely, AI has the ability to easily
generate long courses of action that maximize joint gains, reason
about uncertainty, and learn from observation. However, e!ective
human-machine collaboration can only be achieved if arti"cial
agents are endowed with cognitive and social mechanisms, includ-
ing understanding and predicting the behaviors and preferences
of others, communicating intentions, developing shared mental
models and coordinating behavior accordingly [4]. In humans, such
capability is referred to as forming a Theory-of-Mind (ToM) [2].

In this paper, we focus on developing mechanisms that allow
understanding other agents’—human or arti"cial—underlying moti-
vations and predict and adapt to changes in their behavior in order
to maximize individual rewards in mixed-motivation settings, all
while interacting with them. To address this problem, we propose
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a novel framework called ToMCAT (Theory-of-Mind for Cooper-
ative Agents in Teams).1 Our approach is delineated in Fig. 1 and
comprises two modules: a ToM-predictive network (ToMnet, left)
and a multiagent denoising-di!usion policy model (MADi!, right).

The ToMnet, based on the work of Rabinowitz et al. [20], is a
neural network that learns a strong prior over agents’ preferences
and behavior from data generated by some known family of agents.
After training, it can be used to make predictions about a partic-
ular agent given only limited data about its behavior—a process
referred to as meta-learning. We extend the ToMnet framework
in [20] in various ways. First, we extend it to multiagent settings,
where the observer performing the ToM reasoning is itself an active
member of a team; therefore predictions are made about multiple
teammates, not only over a single agent, and need to be condi-
tioned on the observer’s characteristics. In addition, we assume
that predictions about teammates are made solely based on the
observer’s own (partial) current and past observations rather than
an external observation function as in [20], and therefore obser-
vations include information about all teammates, including the
observer itself. Moreover, our ToMnet’s outputs represent the ob-
server’s beliefs about the mental state of its teammates, and thus
all predictions are represented as probability distributions.

The MADi! component is based on the work of Zhu et al. [31]
and corresponds to a probabilistic denoising-di!usion model that
generates multiagent plans. We extend MADi! by guiding the gen-
eration of plans based on aspects of both the observer agent and its
teammates as encoded in latent representations from the ToMnet,
allowing for adaptation via ToM-conditioned planning. We also pro-
vide a new online mechanism that determines when to replan based
on a measure of misalignment between planned and real world
states, allowing for e#cient reuse of MADi! plans.

By combining ToMnet and MADi!, ToMCAT allows an agent
not only to plan for itself but also to predict the plans of its team-
mates from its own observations, leveraging ToM reasoning to
compensate for the lack of communication and full observabil-
ity of teammates’ states. Moreover, the conditionally generated
behavior through MADi! allows for recursive ToM and nested
beliefs, e.g., allowing an agent to reason about how the di!erent
team members model each other, including the agent itself. Further-
more, conditioning plan generation on ToMnet embeddings that are
trained to predict behavior characteristics of di!erent teammates
allows interacting with unknown teammates (i.e., generalizability)
and combining characteristics of teammates from di!erent teams,

1Throughout the paper we use “teams” to refer to groups of agents in general. While in
our experiments we focus on collaboration, ToMCAT’s mechanisms are agnostic to the
alignment of the agents’ self interests, i.e., can be used in collaborative or competitive
settings. Similarly, we use “teammate” to refer to any other agent in the group.
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Figure 1: The ToMCAT architecture. Left: a Theory-of-Mind network (ToMnet) makes predictions about the behavior and
underlying motivations of the various teammates. Right: a Multiagent Di!usion model (MADi!) generates trajectories
conditioned on the ToM reasoning. → indicates a concatenation operation.

without the need to retrain either model (i.e., compositionality). In
summary, our contributions are as follows:
(1) A meta-learning approach to probabilistic multiagent ToM that

takes into account others’ preferences and behavior and the
observer’s own characteristics.

(2) A team behavior predictive denoising-di!usionmodel that allows
generating multiagent plans conditioned on ToM inferences,
enabling fast understanding of and adaptation to teammates’
preferences and behavior, even in the absence of strong priors.

(3) A dynamic conditional replanning mechanism that allows for
e#cient online agent adaptation—i.e., while interacting with
others—by computing discrepancies in planned world states.

2 RELATEDWORK
To create agents that can adapt to a diverse set of teammates, one
option is to use Reinforcement Learning (RL) to train policies that
maximize a reward function while treating teammates as an ele-
ment of the dynamic environment. E.g., in independent Q-learning
(IQL) [17] an agent relies only on its observations without con-
sidering the actions of others, resulting in non-stationarity and
suboptimal performance. To address this issue, one can instead use
multiagent RL (MARL). In particular, centralized training and de-
centralized execution (CDTE) approaches have been proposed [18]
where an agent has access to states and actions of other agents dur-
ing training, resulting in a centralized value function from which
individual policies are derived via a policy gradient algorithm [28].
However, such approaches do not support cases where agents can-
not directly observe the internal states of others.

One approach to overcome that limitation is to use self-play
(SP) [24], where an agent is trained to play against itself. How-
ever, this is mostly applicable to zero-sum settings or homogeneous
teams, being hard to adapt to di!erent styles of play or roles in a
task. Another approach is to train single-agent policies against a
known set of agent models. Namely, in population-based training
(PBT) [13] one "rst builds a population of diverse agent models
and then trains a policy against agents sampled from the popula-
tion, improving the population during training, e.g., using genetic

algorithms. While ToMCAT follows a similar approach to PBT by
learning from a diverse set of teammates, we train a single model
to learn the distribution of possible team behaviors in a task such
that an agent can be assigned any role and adapt to the behavior of
arbitrary teammates, including sub-optimal ones w.r.t. the task.

Another related body of work is that of ad hoc teamwork [27],
where an agent needs to collaborate e!ectively with other agents
without prior coordination or explicit pre-training. Some approaches
assume that the task is known beforehand, e.g., the ODITS [6] frame-
work trains a single-agent RL policy by considering all teammates
as part of the environment, learning a teamwork situation encoder
whose latent representation conditions the policy for online adap-
tation, akin to the way we condition di!usion policies based on
ToM embeddings. Other approaches try to infer the underlying
collaborative task itself, assumed unknown to the ad hoc agent.
E.g., the ATPO framework [21] casts ad hoc teamwork as identify-
ing the task/teammate from a set of known tasks from histories of
observations, then selecting the appropriate action from the corre-
sponding pre-computed task policy. One disadvantage of RL-based
approaches is that if an agent’s objectives need to change during
a task, e.g., for role reassignment, we need to re-train the policy,
which can be computationally expensive. In contrast, ToMCAT
does not train (a set of) RL policies explicitly optimizing for a sin-
gle reward function—rather, it uses denoising-di!usion policies to
generate plans guided by both the agent’s own preferences, which
might not be aligned with those of its teammates, and teammates’
perceived behavior characteristics. In addition, our models make
predictions about the underlying attributes of teammates, i.e., from
a family of parameterized agents, rather than trying to identify a
teammate from a discrete set.

There is also a wealth of works trying to imbue ToM capabilities
in autonomous agents (see, e.g., [7, 22]). Here we mention those that
are mostly related to our approach on conditioning agent behavior
on predictions of others’ underlying motivations and observed be-
havior. Some, like ours, adopt the framework of I-POMDPs [5, 8]
(an introduction to which is provided in Sec. 3.1), where models
of others are explicitly added as part of the decision-making space



of an agent. E.g., the I-POMDP-Net [9] integrates a planning al-
gorithm to approximately solve POMDPs called QMDP [16] and
beliefs about models of others into a single neural network for ToM
based multi-agent decision making. The PsychSim framework [19]
is a multiagent-based simulation tool based on I-POMDPs for mod-
eling social interaction, where agents form beliefs about the world
and maintain recursive models of other agents (ToM). It uses exact
Bayesian inference to update the beliefs upon new observations,
allowing an agent to compute optimal actions conditioned on the
ToM models through forward planning. Other approaches employ
inverse RL (IRL) to model the motivations of others from observed
behavior, which can be seen as a form of ToM [15]. E.g., the MIRL-
ToM approach in [29] allows recovering the reward functions used
by di!erent agents given trajectories of their behavior by explic-
itly updating posterior distributions over a set of known models
via Bayesian ToM, which allows modeling adaptation to others
without requiring a joint equilibrium solution. Overall, these ap-
proaches only work with "xed agent pro"les and/or a "xed number
of teammates, and the (explicit) Bayesian belief update can become
computationally intractable as the number of teammates grows.
In contrast, ToMCAT does not use an explicit planning module to
solve for the I-POMDP and instead learns a distribution of team
behaviors from a rich dataset and uses di!usion policies for fast
online adaptation to di!erent teammates.

3 TOMCAT
As depicted in Fig. 1, our approach uses two models to generate
ToM-conditioned behavior for online prediction and adaptation in
the context of teams. The Theory-of-Mind network (ToMnet, left)
is responsible for making predictions about teammates’ behavior
conditioned on their observed behavior, while a Multiagent Di!u-
sion network (MADi!, right) generates agent trajectories for all
team members conditioned on the ToM reasoning.

3.1 Preliminaries
We model the problem of an agent modeling and adapting to the
behavior of others using the formalism of interactive partially ob-
servable Markov decision processes (I-POMDPs) [9]. I-POMDP
allows unifying the ToMnet [20] and MADi! [31] approaches—it
supports modeling di!erent types or families of agents in the same
task as in the ToMnet approach, and characterizing the decision-
making problem of individuals in multiagent settings as the MAD-
i! approach. However, it departs from the latter in that it mod-
els self-interested agents and is thus applicable to general-sum
tasks. Formally, an I-POMDP for an agent 𝐿 is de"ned as the tuple
M =

(
𝑀𝐿 ,𝑁,𝑂𝐿 ,𝑃𝐿 ,ω𝐿 ,𝑄𝐿

)
, where 𝑀𝐿 = 𝑀 →𝑀ag

𝑁=1 𝑅𝑁 is the set of inter-
active states, where 𝑀 is the physical environment state space and
𝑅𝑁 is the set of possible models for agent 𝑆 representing its internal
state,𝑁 is the joint action space, 𝑃𝐿 : 𝑀𝐿 →𝑁 ↑ R is agent 𝐿’s reward
function,𝑂𝐿 : 𝑀 →𝑁 ↑ 𝑀 the transition function, ω𝐿 the observation
space, and 𝑄𝐿 : 𝑀 →𝑁𝐿 ↑ ω𝐿 the conditional observation function.

For a given task, we assume a family of agents A =
⋃

𝐿 A𝐿 , akin
to player types in Bayesian game theory [10], where each agent
type is characterized by some private attribute vector, i.e., unobserv-
able by others, containing all information relevant to its decision

making. Without loss of generality, here we consider individual re-
ward functions of the form 𝑃𝐿 (𝑇𝑂 ) = 𝜴 (𝑇𝑂 )↓𝜶 𝐿 , consisting of linear
combinations of (physical) state features, 𝑈𝑃 : 𝑀 ↑ R,𝑉 = 1, . . . , |𝜴 |,
weighted by some weight vector, 𝜶 𝐿 . Therefore, we consider that
agent types can be succinctly expressed via a pro!le function,
𝑊 : A ↑ R𝑄 , and in our experiments set 𝑊𝐿 (A𝐿 ) ω 𝜶 𝐿 , i.e., each
agent type is motivated to optimize over di!erent aspects of the
same general task. For simplicity, we write𝑊𝐿 to denote agent 𝐿’s
pro"le. As for the models𝑋 𝑁 ↔ 𝑅𝑁 of others, here we allow any
representation of teammate 𝑆 ’s private information, including pre-
dictions over its pro"le, beliefs or future behavior.

For training the di!erent modules, we consider observed tra-
jectories of the form 𝑌𝐿 = {(𝑍𝑂𝐿 ,𝑎𝑂𝐿 )}𝑅𝑂=0, where 𝑍𝑂𝐿 = 𝑄𝐿 (𝑎𝑂↗1𝐿 , 𝑇𝑂 )
and 𝑎𝑂𝐿 ↘ 𝑏𝐿 (𝑍𝑂𝐿 ) are respectively agent 𝐿’s observation over the
global state, 𝑇𝑂 , and its action, taken at trajectory step 𝑐 . We assume
that an agent’s observations collected through 𝑄𝐿 include partial
information about its teammates’ overt behavior that will be used
to make predictions about them during task performance.2

3.2 Theory-of-Mind Reasoning
As mentioned earlier, our "rst goal is to create a mechanism capable
of inferring the motivations and intent of teammates from their
observed behavior. To achieve that, we follow the approach in [20],
which aims to develop a machine ToM by training a neural network
called a ToMnet to model the mental states and behaviors of other
agents through meta-learning. The ToMnet learns to predict agents’
future actions and infer their goals and beliefs, including false
beliefs, by observing their behavior in an environment of interest.

As outlined in Fig. 1 (left), the ToMnet consists of three modules:

Character Net: processes trajectories from past episodes of an
observer agent, 𝐿 , acting in the context of a team, with the
goal of characterizing the general behavioral tendencies of team-
mates 𝑆 ↔ 𝑑 ↗𝐿 . Given past trajectories, {𝑌𝐿,𝑆 }

𝑀past
𝑆=1 , and the ob-

server’s pro"le,𝑊𝐿 , it outputs a character embedding, as 𝑒char,𝐿 :=
1

𝑀past

∑𝑀past
𝑆=1 𝑓𝑇 (𝑊𝐿 , 𝑌𝐿,𝑆 ),3 where 𝑓𝑇 is a learned neural network.

The length of past trajectories is denoted by 𝑂past.
Mental Net: focuses on the current episode’s trajectory so far to

provide the necessary context about teammates’ behavior to
infer their current mental state. It computes a mental embedding
as 𝑒ment,𝐿 := 𝑔𝑈 (𝑊𝐿 , [𝑌𝐿 ]𝑂↗𝑅cur:𝑂↗1, 𝑒char,𝐿 ), where [𝑌𝐿 ]𝑅cur:𝑂↗1 com-
prises agent 𝐿’s last 𝑂cur timesteps in the current trajectory and
𝑔𝑈 is another learned neural network.

Prediction Net: uses the outputs of the Character andMental Nets
to update the observer’s beliefs about the teammates’ behavior
and their underlying characteristics. In particular, the Prediction
Net is capable of inferring each teammate’s next-step action
distribution, 𝑏 𝑁 ω ε(𝑁 𝑁 ), and the distribution over the sign
of its pro"le elements, 𝑊 𝑁 ω ε({↗1, 0, 1}𝑄), given the output
of 𝑕𝑉 (𝑊𝐿 ,𝑍𝑂𝐿 , 𝑒char,𝐿 , 𝑒ment,𝐿 ), where 𝑕𝑉 is another learned neural
network serving as the shared torso for the di!erent prediction
heads. The Prediction Net can also estimate other statistics of

2Such information does not include teammates’ reward functions, policies or identi"ers.
3In contrast to [20], we average the embedding for each past trajectorywhen computing
𝑊char to allow for variable number of past trajectories.



teammates’ future behavior, such as the likelihood of picking up
objects in the environment or state occupancies.

The ToMnet is parametrized by 𝑖 , 𝑈 and 𝑗 and is trained end-
to-end. It leverages meta-learning to construct a general ToM—
the model’s parameters encode a prior for modeling diverse agent
types—while dynamically updating an agent-speci!c ToM — the
model’s predictions update a posterior over the characteristics of
a particular teammate from recently observed behavior [20]. Our
extension to multiagent settings results in a single model capable of
forming predictions aboutmultiple agent types from the perspective
of di!erent types of observer agents. Since others’ behavior is
contingent on an observer’s own behavior, the observer’s pro"le is
used as input to condition the predictions of the di!erent modules.

3.3 Multiagent Di!usion Policies
The second component of our architecture depicted in Fig. 1 (right)
allows for learning multiagent policies conditioned on the ToM
information provided by the ToMnet. The idea is to learn policies
that can be used by an agent to adapt to its teammates online,
while interacting with them to perform some task. To achieve that,
we adopted Multiagent Di"usion (MADi!) [31], a framework that
extends single-agent di!usion policies [1, 14] for $exible behavior
planning in teams. MADi! trains a conditional generative behavior
model from diverse data and treats multiagent planning as sampling
from that model. Furthermore, we adopt a decentralized execution
paradigm, where we assume that each agent makes its own decision
without any communication with other agents, based only on local
information from its own observations.

MADi! is de"ned as amultiagent o%ine learning problem, where
we have access to a static dataset, D, containing joint trajectories
of the form 𝜷 := [𝑌𝐿 ]

𝑀ag
𝐿=0 . Since action sequences tend not to be

smooth [1], we only model observed state sequences as in [31].
Namely, given a joint trajectory 𝜷 ↔ D, we sample sequences
of joint observations, 𝜷 :=

[
(𝑍𝑂𝐿 ,𝑍𝑂+1𝐿 , . . . ,𝑍𝑂+𝑋↗1

𝐿 )
]𝑀ag
𝐿=0 , where 𝑐 ↘

U(1,𝑂 ) is the time at which an observation was made by agent
𝐿 , sampled uniformly at random, and 𝑘 is the di!usion horizon.
To retrieve actions from generated plans we use 𝑎𝑂𝐿 := 𝑙𝑌 (𝑍𝑂𝐿 ,𝑍𝑂+1𝐿 ),
where 𝑙𝑌 is an inverse dynamics model shared amongst agents that
is independent from but simultaneously trained with 𝑚𝑍 .

To condition trajectory generation on ToM reasoning, we sam-
ple from perturbed distributions of the form 𝑚𝑍 (𝜷 ) ≃ 𝑚𝑍 (𝜷 )𝑛 (𝜷 ),
where 𝑛 (𝜷 ) is an additional input to the di!usion model encoding
particular properties of joint trajectory 𝜷 . Following the decen-
tralized approach, in ToMCAT perturbations are made from the
perspective of an observer agent 𝐿 , which we denote using 𝑛 (𝑌𝐿 ),
and can include any of the following information:

Pro"le: the observer agent’s pro"le,𝑊𝐿 for which the joint trajec-
tories are being generated.

Character: the embedding provided by the Character Net char-
acterizing teammates 𝑆 ↔ 𝑑 ↗𝐿 , i.e., 𝑒char,𝐿

(
{𝑌𝐿,𝑆 }

𝑀past
𝑆=1

)
, where

𝑌𝐿,𝑆 ↔ D are other trajectories sampled from the dataset in which
agent 𝐿 interacted with the same (types of) teammates.

Mental: the Mental embedding characterizing teammates’ mental
states, i.e., 𝑒ment,𝐿 ( [𝑌𝐿 ]0:𝑂↗1).

Algorithm 1: Online Dynamic Conditional Replanning
Input: 𝑑 , 𝐿 ,𝑊𝐿 , D, 𝑑past, 𝑓𝑇 , 𝑔𝑈 , 𝑜, 𝑝, 𝑞𝑍 , 𝑙𝑌 , 𝑟 , 𝑠 , 𝑘

1 Initialize 𝑒char ⇐ 𝑒char,𝐿
(
{𝑌𝐿,𝑆 ↘ D}𝑀past

𝑆=1

)
, 𝑐 ⇐ 0, 𝑍𝐿 ⇐ ⇒,

𝑡 ⇐ Queue(𝑠,⇒), 𝑌plan ⇐ Queue(𝑘 ,⇒);
2 while not done do
3 Agent 𝐿 observes 𝑍𝐿 ; enqueue(𝑡,𝑍𝐿 );
4 if empty(𝑌𝐿 ) | | 𝑢obs (𝑍𝐿 ,𝑍𝐿 ) > 𝑝 then
5 𝑒ment ⇐ 𝑒ment,𝐿 (𝑡); 𝑛 (𝑌𝐿 ) ⇐ [𝑒char, 𝑒ment,𝑊𝐿 ];
6 Initialize 𝜷𝑎 ↘ N(0,𝑣 𝜸 );
7 for 𝑉 = 𝑤 . . . 1 do
8 𝜷

𝑃
𝐿 [: 𝑠 + 1] ⇐ 𝑡;

9 𝑞 ⇐ 𝑞𝑍 (𝜷𝑃 ,𝑉) + 𝑟
(
𝑞𝑍 (𝜷𝑃 ,𝑛 (𝑌𝐿 ),𝑉) ↗ 𝑞𝑍 (𝜷𝑃 ,𝑉)

)
;

10 𝜷
𝑃↗1 ⇐ denoise(𝜷𝑃 , 𝑞,𝑉);

11 𝑌𝐿 ⇐ 𝜷
0
𝐿 [𝑠 + 1 :]; 𝑌plan ⇐ Queue(𝑘 , 𝑌𝐿 ); 𝑍𝐿 ⇐ 𝑍𝐿 ;

12 𝑍⇑𝐿 ⇐ dequeue(𝑌𝐿 ); 𝑎𝐿 = 𝑙𝑌 (𝑍𝐿 ,𝑍⇑𝐿 ); 𝑍𝐿 ⇐ 𝑍⇑𝐿 ;
13 Execute 𝑎𝐿 , let teammates 𝑆 ↔ 𝑑 ↗𝐿 act;

Returns: any measure of behavior optimality that we wish to
condition trajectory generation on, e.g., the agent’s individual
reward, 𝑃𝐿 (𝑌𝐿 ), or the task reward common to all agents.

In situations where we want to condition trajectory generation on
multiple factors, we concatenate them to form𝑛 (𝑌𝐿 ). In addition, we
follow [1, 14, 31] and constrain trajectory generation on the agent’s
current observation, 𝑍𝑂𝐿 , and on the 𝑠 previous steps, in a process
akin to pixel in-painting in image generation [25]. This leads to an
augmented trajectory 𝜷 :=

[
(𝑍𝑂↗𝑏𝐿 , . . . ,𝑍𝑂𝐿 ,𝑍

𝑂+1
𝐿 , . . . ,𝑍𝑂+𝑋𝐿 )

]𝑀ag
𝐿=0 .

The MADi! model is parametrized by 𝑢 and 𝑥 which are simul-
taneously trained by sampling trajectories from dataset D and ran-
domly selecting an agent to be the “observer”, while other agents are
the teammates. Since we follow a decentralized paradigm, the afore-
mentioned in-painting information for the teammates is zeroed-
out since the observer does not have access to their observations.
Notwithstanding, MADi! is trained to predict the future observa-
tions of all agents given its local observations.

3.4 Dynamic Replanning
To generate plans (trajectories), we use classi"er-free guidance
[12] with low temperature sampling, where we assume an online
setting where an agent 𝐿 is both observing and interacting with
teammates in the context of some task. Generating plans using
di!usion models can be computationally intensive [1, 14], so Janner
et al. [14] proposed a warm-start solution where a plan generated
for previous timesteps is reused by "rst di!using it for a small
number of steps—a fraction of the original di!usion steps—and then
denoising the resulting noise for the same number of steps, thereby
generating a new plan. However, this approach assumes that plans
taken at consecutive timesteps are consistent with one another.
Because ToMCAT generates multiagent plans in a decentralized
manner, the likelihood that plans remain consistent in consecutive
steps is much lower since it would require teammates’ actions to
be consistent with the predicted trajectory.



Figure 2: The cooking domain used in the experiments.

As such, we propose a dynamic replanning approach where an
agent follows the actions in a generated plan while its predictions,
including about its teammates, remain consistent, and replanswhen-
ever they are inconsistent or the plan is depleted. Moreover, to
reduce the number of denoising steps, we use DDIM sampling [26].
This results in the online planning (sampling) approach delineated
in Algorithm 1, corresponding to a modi"ed version of the algo-
rithm in [1]. In addition to computing and using 𝑒char, 𝑒ment and𝑊𝐿
as conditioning variables, the other novelty resides in line 4, where
we compute the di!erence between the current observation and
the observation predicted in the plan, using a suitable metric, 𝑢obs.
If the observation di!erence is higher than a prede"ned threshold,
𝑝, we generate a new plan, otherwise we continue using the actions
from the previously computed one. See Sec. A.1 of the Appendix
for a detailed description of the algorithm.

4 EXPERIMENTS & RESULTS
In this section, we detail the experiments carried out to assess the
usefulness of ToMCAT in generating dynamic, ToM-conditioned
strategies for online adaptation to diverse teammates in collabo-
rative tasks. We detail our experimental scenario, how we trained
various RL agents to generate ground-truth behavioral data, and
how we trained ToMnet and MADi! models therefrom.4 We then
detail the di!erent experiments and analyze the main results.

4.1 Data Collection
To test our approach, we designed a scenario in the Overcooked-
AI simulation platform [3],5 which is a benchmark domain for
research in human-AI collaboration. The custom scenario used in
our experiments is illustrated in Fig. 2. Brie$y, the task objective is
for a team of 𝑑ag = 2 agents to collaborate in order to maximize
the number of soups served within a time limit. Agents need to
collect onions, place them in pots, wait for soups to cook, then
serve them in the corresponding station. Each agent has |𝑁𝐿 | = 6
available actions at each timestep: they can move in four cardinal
directions, perform a “no-op” action, or “interact” with an object
in the environment (e.g., pickup or place items). Agents’ initial
locations in the environment are randomized. Our custom scenario,
inspired by the environment in [30], adds a bottleneck (middle
counter) to increase the usefulness of specialized roles in the task
and decrease the likelihood that agents can perform the task on
their own, requiring e!ective coordination for success.
4Implementation and training details are provided in the Appendix.
5https://github.com/HumanCompatibleAI/overcooked_ai

As mentioned earlier, here we consider reward functions con-
sisting of linear combinations of state features, and set the pro"le
for an agent 𝐿 as 𝑊𝐿 ω 𝜶 𝐿 , where 𝜶 𝐿 is the vector of weights as-
sociated with each feature. We designed a set of representative
pro"les capturing varied sub-goals in the Overcooked task (see
Table A.1 in the Appendix the corresponding weights, 𝜶 𝐿 , and in
Sec. A.2 a description of each reward feature). The pro"les range
from specialized roles, i.e., Cook and Server, to agents that are not
task-oriented, i.e., Random and Follower, where the latter can result
in antagonistic behavior, e.g., they can unintentionally block the
other agent. Our goal was to design pro"les that lead to distinct
behaviors in the task and require di!erent types of collaboration.6

We wanted the dataset D used to train our ToM and planning
modules to be diverse, showing di!erent ways of satisfying com-
binations of conditions, 𝑛 (𝑌𝐿 ), so we trained decentralized MARL
policies for each pair of pro"les in Table A.1 using PPO [23] (see
details in Sec. A.3 of the Appendix), resulting in 21 teams. We then
used the trained policies to generated the dataset, D, by rolling out
trajectories 1 000 trajectories for each agent pair, with a maximum
trajectory length of 𝑂 = 200 timesteps and a policy exploration
(softmax) temperature of 0.3 to ensure some stochasticity in agents’
action selection, resulting in |D| = 21 000 joint trajectories. Fig. 3a
shows the pairwise performance of the di!erent agent pairs in the
dataset, as measured by the mean task reward, 𝑃task, corresponding
to a reward of 𝑃task = 20 when a soup delivered, and 0 otherwise.
As we can see, the dataset represents a wide range of di!erent
team behavior, as desired for training our predictive models. It also
shows the impact of pairing an agent trained to optimize for some
reward function (i.e., pro"le) with di!erent types of teammates,
thus showing inter-dependencies in the task leading to varying
degrees of performance (see, e.g., results for the Sparse agent).

4.2 Model Training
We trained the ToMnet in a supervised manner, where we "rst
sampled a pro"le, 𝑊𝐿 ↘ ϑ, where ϑ is the set of possible pro"les
listed in Table A.1. We set agent 𝐿 to be the observer, and sampled a
joint trajectory, 𝑌 ↘ D where the team, 𝑑 ω {𝐿, 𝑆}, is composed of
the observer and a teammate, 𝑆 . We then selected a timestep, 𝑐 ↘
U(1,𝑂 ), select the “current” observation, 𝑍𝑂𝐿 , and set the “current”
trajectory to [𝑌𝐿 ]𝑂↗𝑅cur:𝑂↗1, where 𝑂cur = 10. We further selected
𝑑past = 4 past trajectories, {𝑌𝐿,𝑆 ↘ D}𝑀past

𝑆=1 , that capture prior
information about the teammate, i.e., where each 𝑌𝐿,𝑆 contains data
of the same team, 𝑑 . All these data were used as inputs to the
ToMnet. Di!erent statistics were then computed from [𝑌𝐿 ]𝑂+1:𝑅 ,
which along with the sign of each of the teammate’s pro"le weights,
𝜶 𝑁 , and its next action, 𝑎𝑂𝑁 , formed the targets of the Prediction net.
See Sec. A.4 of the Appendix for details.

To train the MADi! component, we sampled joint trajectories
𝑌 ↘ D similarly to how we trained the ToMnet, but augmented
trajectories by computing the ToM embeddings, 𝑒char,𝐿 and 𝑒ment,𝐿 ,
for each timestep using the trained ToMnet, so they could be used
as conditioning variables in 𝑛 (𝑌𝐿 ). In addition, when sampling a
trajectory for training, we used𝑠 = 16 steps to constrain trajectory
generation using in-painting, and the subsequent 𝑘 = 64 steps
6Although we design a small set of representative pro"les, the features form a space
of possible pro"les, corresponding to the admissible family of agents in the task, A.

https://github.com/HumanCompatibleAI/overcooked_ai
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Figure 3: MARL and ToMnet training results.

as the planning horizon. As explained earlier, here we consider
decentralized execution, where observers have access to their local
observations, but generate predictions for the future behavior of
the whole team. To ensure that, we masked out teammate obser-
vations when using history in-painting. After training, we used
DDIM sampling for 𝑉 = 15 di!usion steps to generate plans in all
experiments. See Sec. A.5 of the Appendix for more details.

4.3 Model Analysis
We now provide some insights from training the ToMnet and MAD-
i! models. Regarding the ToMnet, Fig. 3b plots the 2D t-SNE rep-
resentations of the character embeddings, 𝑒char, computed for the
trajectories inD. We can see that the Character Net learns di!erent
internal representations for di!erent pro"le “families” denoting
distinct behavior tendencies in the task. As in [20], this shows
that the ToMnet learns useful representations about teammates’
characteristics. However, because we condition ToMnet predictions
on the observer’s own pro"le, our results further show that it dis-
tinguishes between di!erent types of interacting partners, who
may require di!erent types of collaboration. Fig. 3c plots the pre-
diction accuracy of the teammate’s next action when varying the
length of past trajectories, 𝑂past and the number of previous steps
in the current trajectory 𝑂cur, provided to the ToMnet, while "xing
𝑑past = 1. We observe that with a prior trajectory of only approxi-
mately 𝑂past = 40 steps and information on the last 𝑂cur = 10 steps,
the ToMnet achieves maximal performance. The main insight is
that the ToMnet does not require much past information about a
teammate in order to make accurate predictions about its underly-
ing behavior characteristics. This is an indication that, even in the
absence of prior data about a teammate, an observer agent could
potentially use observations collected during a trajectory and feed
those as past trajectories to compute character embeddings.

Regarding the MADi! model, we studied the impact of the dif-
ferent ToM conditioning variables and history in-painting on both
task and individual performance, which is measured as the cumula-
tive task reward, 𝑃task, and individual reward, 𝑃𝐿 , received over the
course of an episode. The latter is important because it is a measure
of how well an agent adheres to the role it was assigned for the
task. Table 1 shows the mean performance for the di!erent types of
conditioning, 𝑛 (𝑌𝐿 ), when models were trained with (𝑠 = 16) and

without (𝑠 = 0) history in-painting. Episodes were generated by
having two ToMCAT agents, equipped with the sameMADi!model
but di!erent pro"les, independently generate a plan at each time
step and perform the "rst action of the plan in the environment.

In general, we observe that the history information provides the
necessary context for prediction in models conditioned by ToM-
based variables, i.e., 𝑒char, 𝑒ment and 𝑊𝐿 , leading to signi"cantly
better performance compared to the no-history counterparts. Fur-
thermore, by looking at the di!erent conditioning sets for the his-
tory case, we see that the more ToM “features” are used, the better
the performance is. We note that even though conditioning only
on task rewards, i.e., 𝑃task, attains the highest team performance,
it leads to very poor individual performance. We hypothesize that
because the MADi! model is unaware of individual preferences, it
learns to mimic the behavior of the best team, leading to improved
task performance but failing to carry out its individual responsibili-
ties. In addition, as will be shown in our experiments, conditioning
on returns works only if both agents use the same MADi! model.

4.4 Agent Experiments
We now address di!erent research questions to assess the useful-
ness of online dynamic replanning and the extent to which ToM-
CAT agents, equipped with di!erent ToM capabilities, can adapt to
teammates, both in the presence and absence of priors about their
behavioral characteristics. For all experiments reported below and
for each test condition, we generated 500 episodes of 200 timesteps
each, where we paired a ToMCAT agent with a RL agent, randomly
assigning pro"les to each agent at the start of an episode. In addi-
tion, in each episode, the policy of the RL agent was selected from
the set trained via MARL, as detailed in Sec. 4.1, corresponding to
the policy that was concurrently trained with another RL agent
using the same pro"le as the ToMCAT agent. In practice, this means
that the RL agent “knows” the pro"le of the ToMCAT agent and
selects the corresponding optimal policy.

4.4.1 Dynamic Replanning. We want to address the following re-
search question: “Can the ToMCAT system perform well when de-
ployed in a dynamic environment without requiring replanning at
every step?” To address that question, unlike prior works that mea-
sure CPU time on a speci"c platform, here we use the number of



Table 1: E!ects of conditioning variables, 𝑛 (𝑌𝐿 ), on MADi! training. We also compare the use of history (𝜹 = 16) vs. no history
(𝜹 = 0) for in-painting constraining. Reported values correspond to averages of cumulative task and individual rewards over
500 episodes of length 200 timesteps. Errors correspond to the 95% CI for the mean.

Task Reward Individual Reward
Conditioning, 𝝐(𝜷𝜴) No History History No History History

[ ] (unconditioned) 6.68 ± 0.82 9.44 ± 1.44 ↗54.33 ± 0.58 ↗52.98 ± 0.76
[𝑃task] 19.36 ± 1.30 34.60 ± 1.61 ↗85.57 ± 1.05 ↗87.84 ± 0.78
[𝑊𝐿 ] 4.68 ± 0.83 9.16 ± 1.28 ↗16.83 ± 0.29 ↗33.19 ± 0.39
[𝑒char] 6.20 ± 1.09 18.92 ± 1.77 ↗11.88 ± 0.25 ↗7.90 ± 0.34
[𝑒ment] 9.48 ± 1.31 12.12 ± 1.51 ↗13.24 ± 0.30 ↗28.03 ± 0.43
[𝑒char, 𝑒ment] 10.04 ± 1.36 22.76 ± 1.89 ↑9.44 ± 0.24 ↗2.52 ± 0.31
[𝑊𝐿 , 𝑒char, 𝑒ment] 8.20 ± 1.28 24.88 ± 1.92 ↗10.67 ± 0.29 1.66 ± 0.30
[𝑃task,𝑊𝐿 , 𝑒char, 𝑒ment] 7.60 ± 0.95 19.20 ± 1.52 ↗19.63 ± 0.35 ↗11.05 ± 0.34
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Figure 4: (a)–(b): impact of various replanning schemes on the agents’ task and individual cumulative rewards. Covariance
ellipses represent the 95% CI of the mean. (c): mean probability over the course of trials of the ground-truth pro"le of the
teammate under the ToMnet prediction in the presence (Prior) vs. absence (No Prior) of prior information about the teammate.

planning steps as a measure of computational “resource usage” and
assess its impact on task and individual agent performance.

In this experiment, we used the MADi! model trained with his-
tory (i.e.,𝑠 = 16) conditioned on all the ToM variables (i.e., 𝑛 (𝑌𝐿 ) ω
[𝑊𝐿 , 𝑒char, 𝑒ment]) as the base model for the ToMCAT agent. To test
the usefulness of the online dynamic replanning capability detailed
in Sec. 3.4, we compare it against replanning at "xed time intervals,
namely: at every timestep (Always), every 10 timesteps (10 Steps),
and every𝑘 = 64 timesteps (Horizon). In order to compute the char-
acter embedding, 𝑒char, the ToMCAT agent is provided 𝑑past = 4
past trajectories sampled from D, where an agent with the same
pro"le interacted with an agent with the teammate’s pro"le.

Figs. 4a and 4b show the average task and individual performance
compared to the plan count for di!erent replanning schemes (see
Table A.2 of the Appendix for the corresponding numeric data).
As we can see, there is a trade-o! between task performance and
resource usage, and this trade-o! is not linear. In particular, Dy-
namic replanning makes the best use of resources compared to
"xed-interval schemes, achieving approximately the same level of
performance as agents that replan at every step (i.e., Always), but
using only about one third of resources. This shows the advantage

of our replanning mechanism that automatically detects the diver-
gence between projected and actual states of the world and replans
accordingly, using the entire plan if everything goes as expected.

4.4.2 Known Teammates. In this experiment, we want to address
the question: “Can ToM reasoning improve team performance in the
presence of strong teammate priors?” Here we want to understand
whether ToM is important for ToMCAT agents when paired with
teammates for whom prior behavior demonstrations are provided,
corresponding to supplying 𝑑past = 4 past trajectories as detailed in
the previous experiment. To address that question, we test ToMCAT
agents equipped with MADi! models under di!erent conditioning
variables, 𝑛 (𝑌𝐿 ), namely: Unconditioned, Returns ([𝑃task]), Pro!le
([𝑊𝐿 ]), and ToM ([𝑊𝐿 , 𝑒char, 𝑒ment]). As an upper bound on perfor-
mance, we also test against a team of RL agents, where at each
episode we sample a pair of policies that were concurrently trained
via MARL, corresponding to the Know RL condition.

The results are shown in Table 2, where we measure resource
usage (i.e., plan count) and the task and individual performance as
in the previous experiment. Overall, we observe that agents with
ToM capabilities (i.e., ToM) attain better task performance, adhere
the best to their pre-assigned roles (compare with Pro!le), and use



Table 2: ToM impact in the presence of teammate priors.

Condition Plan Count Task Rwd Indiv. Rwd

Unconditioned 78.63 ± 3.62 10.88 ± 1.92 ↗30.39 ± 8.83
Returns 99.71 ± 3.14 11.36 ± 1.56 ↗37.54 ± 9.75
Pro!le 87.28 ± 3.99 14.24 ± 2.28 ↗29.29 ± 9.57
ToM 64.89 ± 3.82 23.52 ± 2.89 ↗1.74 ± 6.90
RL Known - 41.96 ± 3.47 23.85 ± 6.71

Table 3: ToM impact in the absence of teammate priors.

Condition Plan Count Task Rwd Indiv. Rwd

Unconditioned 79.79 ± 3.61 10.64 ± 1.83 ↗34.32 ± 9.72
Returns 105.11 ± 3.09 10.88 ± 1.50 ↗41.37 ± 10.58
Pro!le 87.00 ± 3.95 14.24 ± 2.33 ↗31.29 ± 9.79
ToM 83.97 ± 3.81 12.52 ± 2.19 ↗29.25 ± 9.34
RL Unknown - 10.36 ± 1.88 ↑11.05 ± 5.76

less resources. In contrast, in this experiment, agents conditioned
only to maximize task returns fail to correctly perform the task
as they are unable to adapt to the teammate’s characteristics. In
addition, although the pure RL team unsurprisingly achieves the
best performance, we note that this would require agents to know
their exact teammates’ pro"les and co-training for each possible
pair, while the ToMCAT agent can use a single ToMnet and MADi!
model and adapt to a multitude of teammate behaviors.

4.4.3 Unknown Teammates. Here we want to address the question:
“Can ToMCAT agents learn from and adapt to unknown teammates?”
We adopted a methodology similar to that of the previous experi-
ment, but where the ToM agent was not provided any past trajec-
tories about its teammate, i.e., 𝑑past = 0. Instead, for the "rst 100
timesteps of an episode, the agent updated a bu!er of observations,
and used that to compute the character embedding, 𝑒char. We also
used a di!erent baseline against which to compare the MADi!
agents, namely a team of RL agents that did not “know” their team-
mate. Recall from Sec. 4.1 that we co-trained RL policies via MARL
for all pairs of agent pro"les. Since we designed 7 pro"les, this
results in 6 policies trained for each pro"le. As such, for the RL
Unknown condition, we selected for each RL agent a policy from
the corresponding set of pro"le policies uniformly at random.

Table 3 shows the results for the di!erent conditions. The pure
RL agents failed to coordinate with their teammates due to the
random policy selection. Notwithstanding, they attained the best
mean individual performance since their policies were trained to
maximize the reward function associated with their pro"les, ir-
respectively of the teammate. We also see that despite not being
provided prior information about a teammate, the ToM agent is still
able to perform better than the unconditioned agent and the RL
team (di!erence not statistically signi"cant, 𝑚 ⇓ 0.05). Moreover,
the Pro!le condition attained the highest mean task performance.

The are a few possible reasons for the lower performance of
the ToMCAT agent in this unknown teammate scenario. First, the
MADi!models were trained with data produced by RL policies that
have a predictable behavior when paired with the corresponding RL
teammate—since their policies were co-trained—and were provided

with 𝑑past = 4 past trajectories. However, here the Character em-
beddings are not informative enough, especially at the beginning of
an episode. This results in the agents not coordinating their behav-
ior, which in turn in$uences plan generation since we use history
in-painting. This analysis is supported by Fig. 4c, where we see that
when provided with prior information, a ToMCAT agent is able
to correctly identify the teammate’s pro"le (𝑦 ⇔ 1) from the start.
This contrasts with the No Prior condition, where the probability
increases as more observations are collected, but on average is no
higher than 0.89. We also tested updating the current observation
bu!er continuously beyond 𝑐 = 100 in a sliding window manner,
but observed a decline in ToM performance, presumably because
all past trajectories used to train the ToMnet and MADi! models
were collected for the "rst 𝑂past = 100 steps of episodes.

Overall, we would need to train the ToMnet and MADi! mod-
els from past trajectories collected at di!erent timesteps, and vary
the number of past trajectories during training, including provid-
ing no prior data, to increase the robustness of ToMCAT agents
when paired with unknown teammates. In addition, we believe
that training would bene"t from data collected by pairing di!er-
ent agents, e.g., randomly pairing RL agents, which would better
capture the distribution of possible team behaviors in the task. We
acknowledge the current limitations of our framework and leave
these developments for future work.

5 CONCLUSIONS & FUTUREWORK
This paper presented ToMCAT, a new framework that combines
ToM reasoning with multiagent planning for fast adaptation in
complex multiagent tasks. It integrates a ToM network (ToMnet)
that learns a strong prior of possible team behaviors and leverages
meta-learning to make predictions about underlying characteristics
of teammates from minimal data, with a multiagent denoising-
di!usion policy (MADi!) approach that generates plans for the
agent and its teammates conditioned by ToM embeddings of the
team. An online dynamic replanning mechanism monitors plan
execution and triggers the sampling of a new plan whenever there
is a discrepancy between the plan and the current state of the world.
We performed various experiments using di!erent parameteriza-
tions of ToMCAT agents under di!erent conditions in a simulated
collaborative cooking domain. The results show the usefulness of
the replanning mechanism in attaining good pairwise performance
without the need to replan at short, "xed-time intervals. It also
underscores the importance of reasoning about teammates’ charac-
teristics as informed by the ToM embeddings and the agent’s own
characteristics to allow for fast adaptation to di!erent teammates,
especially when no prior information is provided about them.

Future work: We are currently designing a joint model ap-
proach, where ToMnet and MADi! systems are combined into a
probabilistic generative model that allows sampling multiagent
plans conditioned on ToM information, while “forcing” the model
to predict desired characteristics of teammate motivations and be-
haviors. We are also addressing the challenges of making ToMCAT
agents more robust to unknown teammates and exploring how the
framework can be applied in ad hoc teamwork settings. Finally,
we plan to apply ToMCAT to learn from human data to infer pro-
"les, behavior trends of people performing complex joint tasks, and
explore its application in adversarial settings requiring nested ToM.
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