
Leveraging Unlabeled Data Sharing through Kernel Function
Approximation in Offline Reinforcement Learning

Yen-Ru Lai
1
, Fu-Chieh Chang

1,2
and Pei-Yuan Wu

1

1
Graduate Institute of Communication Engineering, National Taiwan University

2
Mediatek Research

Taipei, Taiwan

{r09942079,d09942015,peiyuanwu}@ntu.edu.tw

ABSTRACT
Offline reinforcement learning (RL) learns policies from a fixed

dataset, but often requires large amounts of data. The challenge

arises when labeled datasets are expensive, especially when rewards

have to be provided by human labelers for large datasets. In contrast,

unlabelled data tends to be less expensive. This situation highlights

the importance of finding effective ways to use unlabelled data in

offline RL, especially when labelled data is limited or expensive

to obtain. In this paper, we present the algorithm to utilize the

unlabeled data in the offline RL method with kernel function ap-

proximation and give the theoretical guarantee. We present various

eigenvalue decay conditions of the RKHS H𝑘 induced by kernel

𝑘 which determine the complexity of the algorithm. In summary,

our work provides a promising approach for exploiting the advan-

tages offered by unlabeled data in offline RL, whilst maintaining

theoretical assurances.

KEYWORDS
Reinforcement Learning, Learning Theory

1 INTRODUCTION
Reinforcement learning (RL) algorithms have demonstrated em-

pirical success in a variety of domains, including the defeat of Go

champions [25], robot control [19], and the development of large

language models such as ChatGPT [29]. In particular, these achieve-

ments are largely associated with online reinforcement learning,

characterized by dynamic data collection. However, the widespread

adoption of online RL faces significant challenges. In many scenar-

ios, active exploration is impractical due to factors such as the high

cost of data collection [22]. To this end, in this paper we explore

offline reinforcement learning - a fully data-driven framework sim-

ilar to supervised learning. Unfortunately, fully data-driven offline

RL demands large datasets. In more realistic scenarios, offline rein-

forcement learning (RL) could allow us to use a smaller amount of

task-specific data along with a significant amount of task-agnostic

data. This data is not labeled with task rewards, and some of it may

not be directly relevant to the task at hand.

Prior works use learned classifiers that discriminate between

successes and failures for reward labeling [12, 26] in the online RL

setting. However, these approaches are unsuitable for the offline RL

setting since they require real-time interaction. Alternatively, some

research focuses on learning from data without explicit reward

labels by directly imitating expert trajectories [13, 21] or deriving

Proc. of the Adaptive and Learning Agents Workshop (ALA 2025), Avalos, Aydeniz,
Müller, Mohammedalamen (eds.), May 19 – 20, 2025, Detroit, Michigan, USA, ala-
workshop.github.io. 2025.

the reward function through inverse reinforcement learning us-

ing an expert dataset [10, 11]. However, in real-world scenarios,

these approaches may face challenges due to the resource-intensive

and costly nature of the expert trajectory acquisition and reward

labelling process.

Yu et al. [45] has revealed the challenges associated with learning

to predict rewards, highlighting the surprising efficacy of setting

the reward to zero. Despite these findings, the impact of reward

prediction methods on performance and the potential demonstra-

ble benefits of reward-free data in offline reinforcement learning

(RL) remain unclear. In response to this, Hu et al. [15] have intro-

duced a novel model-free approach named Provable Data Sharing

(PDS). PDS incorporates uncertainty penalties into the learned re-

ward functions, maintaining a conservative algorithm. This method

allows PDS to take advantage of unlabeled data for offline RL, es-

pecially in linear MDPs. However, the linear MDP assumption is

inflexible and rarely is fulfilled in practice. This question naturally

arises.

How can we enhance the performance of offline RL algorithms

that use kernel function approximation by effectively using reward-

free data?

This work focuses on the episodic Markov decision process

(MDP). The reward function and value function are both repre-

sented by kernel functions. Inspired by the Provable Data Sharing

(PDS) [15] framework, we propose a new algorithm. The PDS algo-

rithm has two main components. First, it pessimistically estimates

rewards by applying additional penalties to the reward function

learned from labeled data. This augmentation is designed to prevent

overestimation, thus ensuring a conservative algorithm. The sec-

ond part of the PDS algorithm uses the Pessimistic Value Iteration

(PEVI) algorithm introduced by Jin et al. [18] to derive the policy.

Our main contribution is that

• Extension of PDS framework: We expand the applicability

of the Provable Data Sharing (PDS) framework, initially in-

troduced by Hu et al. [15]. This extension goes beyond the

original linear Markov Decision Process (MDP) setting, in-

corporating kernel function approximation. This expansion

enhances the versatility of the PDS framework, making it

applicable to a broader range of scenarios. Our derivation is

influenced by methodologies proposed for kernelized con-

textual bandits [7, 27, 35], as well as techniques such as pes-

simistic value iteration (PEVI) [18] and the kernel optimum

least squares value iteration algorithm (KOVI) [41].

• Focus on finite-horizon MDPs: While Hu et al. [15] concen-

trates on a discounted infinite-horizon MDP setting, our

work shifts the focus to finite-horizon MDPs. This adjust-

ment accommodates horizon-dependent reward functions

and transition probability functions, addressing a specific

and practical aspect of reinforcement learning.

• Feature coverage assessment via concentratability coeffi-

cient: In contrast to Hu et al. [15], which relies on a bounded

concentratability coefficient to assess coverage over the state-

action space, we evaluate distribution shift using the spec-

trum of feature covariance matrices. This alternative metric

[37], introduced in Assumption 4.7, is a well-established ap-

proach in supervised learning and is particularly suited for

scenarios involving linear function approximation. Our as-

sumptions enable simultaneous comparisons across all poli-

cies, providing a stronger guarantee than merely competing

against the optimal policy”

• Enhance the suboptimality: By employing the data-splitting

technique discussed by Xie et al. [39], the suboptimality

can be enhanced by a factor of

√
𝑑 , which depends on the

choice of kernel. This enhancement comes at the cost of√
𝐻 , a constant inherent in the MDP. Nevertheless, with

an appropriate selection of kernel, the overall algorithmic

performance can be significantly improved.

Our research provides a theoretical guarantee for effectively

utilizing the benefits of reward-free data in offline RL. We aim

to enhance the robustness of offline RL methods by maintaining

theoretical guarantees, which offers a valuable contribution to the

ongoing development of more resilient and efficient RL frameworks.

2 RELATEDWORKS
The issue of suboptimality in discounted and episodic MDP with a

model has been considered in linear and kernel settings. The results

are presented in Table 1. In the episodic MDP setting, we have the

dataset with 𝑁 trajectories of horizon 𝐻 , and the suboptimality

dependent on 𝑁 and 𝐻 . On the other hand, in a discounted MDP

setting, we have the dataset with length 𝑁 , and suboptimality de-

pendent on 𝑁 . The PEVI algorithm [18] serves as the foundational

algorithm within Hu et al. [15] and our work. If we assume that the

infinite horizon MDP should conclude within 𝐻 steps (referred to

as the effective horizon) [40], we can set the discount factor 𝛾 such

that 𝐻 = 1/(1 − 𝛾). Consequently, the suboptimality for the PDS

algorithm is expressed as
˜O(𝑑𝐻2𝑁

− 1

2

2
) where 𝑁2 is the number of

trajectories for the unlabeled dataset. Similar to Hu et al. [15], we

incorporate unsupervised data sharing to enhance the offline RL

algorithm. The linear setting is a special case of the kernel setting

with a linear kernel. In this case, we can recover the suboptimality

as
˜O(𝐻𝑑

1

2𝑁
− 1

2

1
), where 𝑁1 is the number of trajectories for the

labeled dataset, as provided in Hu et al. [15]. A notable difference

between PEVI and PDS lies in PDS’s utilization of data sharing

to improve the suboptimality through an unlabeled dataset. It’s

important to note that 𝑁2 > 𝑁1 in general. When comparing PDS

with our approach in a linear setting, the 𝐻 -folds data splitting in

our algorithm enhances the suboptimality by a factor of

√
𝑑 . How-

ever, this improvement comes with a tradeoff, as our algorithm

introduces a suboptimality increment by a factor of

√
𝐻 because

we need to partition the data set into 𝐻 folds. As a result, each

estimated value function is derived from only 𝑁2/𝐻 episodes of

data.

2.1 Offline Reinforcement Learning
In offline reinforcement learning (RL), the goal is to learn a pol-

icy from a static data set collected previously without interacting

with the environment. Current approaches in offline RL [22] can be

broadly classified into dynamic programming methods and model-

based methods. Dynamic programming methods aim to learn a

state action value function, known as the𝑄 function. Subsequently,

this value function is used either to directly find the optimal policy

or, in the case of actor-critic methods, to estimate a gradient for

the expected returns of a policy. The offline dynamic programming

algorithm operates in a tabular setting [17]. However, algorithms

designed for tabular settings have limitations when applied to func-

tion approximation settings with a large number of effective states.

Recent work has centered around the functional approximation

setting, especially in the linear setting, where the value function

(or transition model) can be represented using a linear function of

a known feature mapping [5, 18, 49]. As the linear Markov decision

process (MDP) assumption is rigid and rather restrictive in practice,

Wang et al. [38] explores the kernel optimal least squares value

iteration (KOVI) algorithm [41] for general function approximation.

In contrast, model-based methods rely on their ability to estimate

the transition function using a parameterized model, such as a neu-

ral network. Instead of employing dynamic programming methods

to fit the model, model-based approaches leverage their ability to

effectively utilize large and diverse datasets to estimate the tran-

sition function [16, 32, 47]. Both of the methods presented above

require a large amount of data to learn a state-action or transition

function. In our work, we use reward-free data (i.e., unlabeled data)

to improve the performance of learning a state-action function.

On the theoretical front, Yin et al. [44] explore offline reinforce-

ment learning with differentiable function class approximations,

extending to non-linear function approximation. Blanchet et al. [4]

investigate distributionally robust offline reinforcement learning

(robust offline RL), which aims to identify an optimal policy from

offline datasets that remains effective in perturbed environments.

Meanwhile, Hu et al. [14] addresses the fundamental challenge of

transitioning from offline learning to online fine-tuning.

2.2 Offline Data Sharing
Data sharing strategies in multi-task reinforcement learning (RL)

have shown effectiveness, as observed in works such as Chen et al.

[6], Eysenbach et al. [9], Yu et al. [46]. This involves reusing data

across different tasks by relabeling rewards, thereby enhancing

performance in multi-task offline RL scenarios. Prior work has

employed various relabeling strategies. These include uniform la-

beling [20], labeling based on metrics such as estimated 𝑄-values

[46], and labeling based on distances to states in goal-conditioned

settings [6]. However, these approaches either necessitate access to

the functional form of the reward for relabeling or are confined to

goal-conditioned settings. On the other hand, Yu et al. [45] proposes

a straightforward strategy by assigning zero rewards to unlabeled

data. On the other hand, Hu et al. [15] employs linear regression to

Table 1: The existing suboptimality under weak convergence (see Assumption 4.7)(except for the last row) , discussed in Section
2. Here, the labeled dataset represented as {(𝑠′𝜏

ℎ
, 𝑎′𝜏

ℎ
, 𝑟𝜏
ℎ
)}𝑁1,𝐻

𝜏,ℎ=1
, unlabeled dataset represented as {(𝑠′𝜏+𝑁1

ℎ
, 𝑎′𝜏+𝑁1

ℎ
)}𝑁2,𝐻

𝜏,ℎ=1
, and D𝜃 ,

which is a combination of labeled dataset and unlabeled dataset with 𝑁 = 𝑁1 + 𝑁2 trajectories. We partition the dataset D𝜃 into
𝐻 disjoint and equally sized sub dataset {D̃𝜃

ℎ
}𝐻
ℎ=1

. Denote 𝛾 as the discount factor for discounted MDP, 𝐺 (𝑁, 𝜆) is the maximum
information gain, 𝜁D = maxℎ∈[𝐻] E𝜋∗ [𝜁ℎ (D′,D) | 𝑠1 = 𝑠0] represents a maximum amount of information from the dataset D
and D′, where D′ is the combination of D and observed data 𝑧, and 𝜁D̃ = maxℎ∈[𝐻] E𝜋∗

[
𝜁ℎ ((D̃𝜃ℎ)

′, D̃𝜃
ℎ
) | 𝑠1 = 𝑠0

]
. Note that

𝜈 = 1 + 1

𝑁1

and 𝜆 = 1 + 1

𝑁
. In a linear MDP setting, it is stated that the transition probability can be represented linearly in a

feature map of state-action with 𝑑 dimensions.

Algorithm MDP Setting SubOpt

PEVI [18] Episodic Linear
˜O(𝑑𝐻2𝑁

− 1

2

1
)

PDS [15] Discounted Linear
˜O(𝑑

1

2 (1 − 𝛾)−1𝑁
− 1

2

1
) + ˜O(𝑑 (1 − 𝛾)−2𝑁

− 1

2

2
)

Our work Episodic kernel-based, 𝑑-finite spectrum ˜O(𝐻𝑑
1

2𝑁
− 1

2

1
) + ˜O(𝐻

5

2𝑑
1

2𝑁
− 1

2

2
)

Our work Episodic kernel-based, general setting
˜O(𝐻

√︁
𝐺 (𝑁1, 𝜈)𝜁D1

) + ˜O(𝐻2

√︃
𝐺 (𝑁

𝐻
, 𝜆)𝜁D̃)

label rewards for unlabeled data. These approaches present alterna-

tive and potentially simpler methods for relabeling, especially in

scenarios where direct access to the reward function is challenging

or unavailable. In our work, we propose kernel ridge regression

to exploit unlabeled data which under certain conditions can be

reduced to linear regression.

3 BACKGROUND
3.1 Episodic Markov Decision Process
Consider an episodic MDP [30, 41], denoted asM = (S,A, 𝐻,P, 𝑟)
with state space S, action space A, horizon 𝐻 , transition function

P = {Pℎ}ℎ∈[𝐻] , and reward function 𝑟 = {𝑟ℎ}ℎ∈[𝐻] . We assume

that the reward function is bounded, that is, 𝑟ℎ ∈ [0, 1]. For any
policy 𝜋 = {𝜋ℎ}ℎ∈[𝐻] and ℎ ∈ [𝐻], we define the state-value func-
tion 𝑉 𝜋

ℎ
: S → R and the action-valued function (Q-function) 𝑄𝜋

ℎ
:

S ×A → R as𝑉 𝜋
ℎ
(𝑠) = E𝜋

[∑𝐻
𝑡=ℎ

𝑟𝑡 (𝑠𝑡 , 𝑎𝑡) |𝑠ℎ = 𝑠
]
and𝑄𝜋

ℎ
(𝑠, 𝑎) =

E𝜋
[∑𝐻

𝑡=ℎ
𝑟𝑡 (𝑠𝑡 , 𝑎𝑡) |𝑠ℎ = 𝑠, 𝑎ℎ = 𝑎

]
. These two functions satisfy the

well-known Bellman equation: 𝑉 𝜋
ℎ
(𝑠) =

〈
𝑄𝜋
ℎ
(𝑠, ·), 𝜋ℎ (· | 𝑠)

〉
A

and

𝑄𝜋
ℎ
(𝑠, 𝑎) = E

[
𝑟ℎ (𝑠ℎ, 𝑎ℎ) +𝑉 𝜋ℎ+1 (𝑠ℎ+1) | 𝑠ℎ = 𝑠, 𝑎ℎ = 𝑎

]
. For any func-

tion 𝑓 : S → R, we define the transition operator at each step ℎ ∈
[𝐻] as (Pℎ 𝑓) (𝑠, 𝑎) = E [𝑓 (𝑠ℎ+1) | 𝑠ℎ = 𝑠, 𝑎ℎ = 𝑎], and define the

Bellman operator as (Bℎ 𝑓) (𝑠, 𝑎) = E [𝑟ℎ (𝑠ℎ, 𝑎ℎ) | 𝑠ℎ = 𝑠, 𝑎ℎ = 𝑎] +
(Pℎ 𝑓) (𝑠, 𝑎). Similarly, for all ℎ ∈ [𝐻], the Bellman optimality

equations defined as 𝑉 ∗
ℎ
(𝑠) = sup𝑎∈A 𝑄

∗
ℎ
(𝑠, 𝑎) and 𝑄∗

ℎ
(𝑠, 𝑎) =(

Bℎ𝑉
∗
ℎ+1

)
(𝑠, 𝑎). Meanwhile, the optimal policy 𝜋∗ satisfies 𝜋∗

ℎ
(· |

𝑠) = argmax

𝜋ℎ

〈
𝑄∗
ℎ
(𝑠, ·), 𝜋ℎ (· | 𝑠)

〉
A
and𝑉 ∗

ℎ
(𝑠) =

〈
𝑄∗
ℎ
(𝑠, ·), 𝜋∗

ℎ
(· | 𝑠)

〉
A
.

Reinforcement learning aims to learn a policy maximizing expected

cumulative reward. Accordingly, we define the performance met-

ric(i.e.,suboptimality) as

SubOpt(𝜋 ; 𝑠) = 𝑉 𝜋
∗

1
(𝑠) −𝑉 𝜋

1
(𝑠) . (1)

3.2 Assumption of Offline Data
In offline RL setting, a learner uses pre-collected dataset D, which

consists of 𝑁 trajectories

{(
𝑠𝜏
ℎ
, 𝑎𝜏
ℎ
, 𝑟𝜏
ℎ

)}𝑁,𝐻
𝜏,ℎ=1

, generated by some

fixed but unknown MDPM under the behavior policy 𝜋b
in the fol-

lowing manner: 𝑠𝜏
1
∼ 𝜌b, 𝑎𝜏

ℎ
∼ 𝜋b

ℎ

(
· | 𝑠𝜏

ℎ

)
and 𝑠𝜏

ℎ+1 ∼ Pℎ
(
· | 𝑠𝜏

ℎ
, 𝑎𝜏
ℎ

)
,

1 ≤ ℎ ≤ 𝐻 . Here 𝜌b
represents a predetermined initial state

distribution associated with the static dataset. The learner may

also have partial observations of the reward in addition to the

above state-action observations. More elaborately, we assume ac-

cess to both a labeled dataset D1 =

{(
𝑠′𝜏
ℎ
, 𝑎′𝜏

ℎ
, 𝑟𝜏
ℎ

)}𝑁1,𝐻

𝜏,ℎ=1

, and an

unlabeled dataset D2 =

{(
𝑠′𝜏+𝑁1

ℎ
, 𝑎′𝜏+𝑁1

ℎ

)}𝑁2,𝐻

𝜏,ℎ=1

. We utilize the

estimated reward function with parameter 𝜃 , as determined in sec-

tion 4, to relabel dataset D2. The relabeled dataset, denoted as

D𝜃
2
=

{(
𝑠′𝜏+𝑁1

ℎ
, 𝑎′𝜏+𝑁1

ℎ
, �̂�
𝜃ℎ
ℎ
(𝑠′𝜏+𝑁1

ℎ
, 𝑎′𝜏+𝑁1

ℎ
)
)}𝑁2,𝐻

𝜏,ℎ=1

.

3.3 Reproducing Kernel Hilbert Space
Consider a reproducing kernel Hilbert space (RKHS) as a func-

tion space. For simplicity, let 𝑧 = (𝑠, 𝑎) denote a state-action pair

and denote Z = S × A. Without loss of generality, we regard

Z as a compact subset of R𝑚 , where the dimension 𝑚 is fixed.

Let 𝑘 : Z × Z → R be a positive definite continuous kernel

and its corresponding kernel matrix [K]𝑖, 𝑗 = 𝑘 (𝑧𝑖 , 𝑧 𝑗),∀𝑖, 𝑗 ∈ [𝑚].
Note that K is positive semi-definite. Define H𝑘 as the RKHS in-

duced by 𝑘 , containing a family of functions defined in Z. Let

⟨·, ·⟩H𝑘 : H𝑘 × H𝑘 → R and ∥ · ∥H𝑘 : H𝑘 → R denote the

inner product and the norm on H𝑘 , respectively. According to

the reproducing property, for all 𝑓 ∈ H𝑘 , and 𝑧 ∈ Z, holds

𝑓 (𝑧) = ⟨𝑓 , 𝑘 (·, 𝑧)⟩H𝑘 . For more details and different characteri-

zations of RKHS, see Aronszajn [2], Berlinet and Thomas-Agnan

[3]. Without loss of generality, we assume that sup𝑧∈Z 𝑘 (𝑧, 𝑧) ≤ 1.

Let L2 (Z) be the set of square-integrable functions onZ with

respect to the Lebesgue measure and let ⟨, ⟩L2 be the inner prod-

uct on L2 (Z). The kernel function 𝑘 induces an integral operator

𝑇𝑘 : L2 (Z) → L2 (Z) defined as 𝑇𝑘 𝑓 (𝑧) =
∫
Z 𝑘 (𝑧, 𝑧

′) 𝑓 (𝑧′) d𝑧′

for all 𝑓 ∈ L2 (Z). By Mercer’s theorem [28], the integral operator

𝑇𝑘 has countable and positive eigenvalues {𝜎𝑖 }𝑖≥1 and the corre-

sponding eigenfunctions {𝜓𝑖 }𝑖≥1. Then, the kernel function admits

a spectral expansion 𝑘 (𝑧, 𝑧′) = ∑∞
𝑖=1

𝜎𝑖𝜓𝑖 (𝑧)𝜓 𝑗 (𝑧′). Moreover, the

RKHS H𝑘 can be written as a subset of L2 (Z) such that H𝑘 ={
𝑓 ∈ L2 (Z) :

∑∞
𝑖=1

⟨𝑓 ,𝜓𝑖 ⟩2L2

𝜎𝑖
< ∞

}
, and the inner product of H𝑘

also can be written as ⟨𝑓 , 𝑔⟩H𝑘 =
∑∞
𝑖=1
(1/𝜎𝑖) ⟨𝑓 ,𝜓𝑖 ⟩L2 ⟨𝑔,𝜓𝑖 ⟩L2

for all 𝑓 , 𝑔 ∈ H𝑘 . With the above construction, the scaled eigen-

functions {√𝜎𝑖𝜓𝑖 }𝑖≥1 form an orthonormal basis forH𝑘 . We define

the mapping 𝜙 : 𝑧 ↦→ 𝑘 (𝑧, ·) to transform data from Z = S × A
to the (possibly infinite-dimensional) RKHS H𝑘 , which satisfies

𝑘 (𝑧, 𝑧′) = ⟨𝜙 (𝑧), 𝜙 (𝑧′)⟩H𝑘 for all 𝑧, 𝑧′ ∈ Z [28, Lemma 4.19]. We

define the maximum information gain [27] to describe the complex-

ity ofH𝑘 :

𝐺 (𝑛, 𝜆) = sup

{
1

2

log det (𝐼 + 𝐾D/𝜆) : D ⊂ Z, |D| ≤ 𝑛
}
, (2)

where 𝐾D is the kernel matrix for the set D. Furthermore, the

magnitude of maximal information gain 𝐺 (𝑛, 𝜆) depends on how

rapidly the eigenvalues decay to zero, serving as a proxy dimension

ofH in the case of an infinite-dimensional space. IfH𝑘 is of finite

rank, we have that𝐺 (𝑛, 𝜆) = O(𝑑 log𝑛) [41], where 𝑑 is the rank of

H𝑘 – referred as the 𝑑-finite spectrum. In the following, we present

several conditions that are often used in the analysis of the RKHS

property ofH𝑘 [34, 41, 42] characterizing the eigenvalue decay of

H𝑘 .
Assumption 3.1. The integral operator𝑇𝐾 has eigenvalues {𝜎 𝑗 } 𝑗≥1

and the associated eigenfunctions {𝜓 𝑗 } 𝑗≥1. We assume that {𝜎 𝑗 } 𝑗≥1

satisfies one of the following conditions for some constant 𝑑 > 0.
• 𝑑-finite spectrum: 𝜎 𝑗 = 0,∀𝑗 > 𝑑 , where 𝑑 is a positive integer.
• 𝑑-exponential decay: there exists some constants 𝐶1,𝐶2 > 0

such that 𝜎 𝑗 ≤ 𝐶1 · exp

(
−𝐶2 · 𝑗𝑑

)
, ∀𝑗 ≥ 1, where 𝑑 > 0.

• 𝑑-polynomial decay: there exists some constants 𝐶1 > 0 such
that 𝜎 𝑗 ≤ 𝐶1 · 𝑗−𝑑 ∀𝑗 ≥ 1,, where 𝑑 > 1.

For both 𝑑-exponential decay and 𝑑-polynomial decay, we assume
that there exists 𝐶𝜓 > 0 such that sup𝑧∈Z 𝜎

𝜏
𝑗
·
��𝜓 𝑗 (𝑧)�� ≤ 𝐶𝜓 holds

for all 𝑗 ≥ 1 and 𝜏 ∈ [0, 1/2).
For instance, letD ⊂ R𝑑 and assume the kernel function𝑘 (𝑧, 𝑧′) ≤

1, the Squared Exponential kernel, defined as

𝑘 (𝑧, 𝑧′) = exp

(
− |𝑧 − 𝑧

′ |2
2𝑙2

)
(3)

where 𝑙 is a lengthscale parameter, exhibits 𝑑-exponential decay.

Similarly, the Matérn kernel, given by

𝑘 (𝑧, 𝑧′) = 2
1−𝜈

Γ(𝜈) 𝑟
𝜈𝐵𝜈 (𝑟), 𝑟 =

√
2𝜈

𝑙
|𝑧 − 𝑧′ |

is characterized by 𝑑-polynomial decay. Here, 𝜈 determines the

smoothness of sample paths (with smaller 𝜈 producing rougher

paths), and𝐵𝜈 is themodified Bessel function. Theorem 5 in Srinivas

et al. [27] provides detailed proof for these kernel properties.

We assume that the Bellman operator maps any bounded func-

tion onto a bounded RKHS norm ball, which is the common as-

sumption used in the function approximation [17, 41].

Assumption 3.2. Define Q∗ =
{
𝑓 ∈ H𝑘 : ∥ 𝑓 ∥H𝑘 ≤ 𝑅𝑄𝐻

}
as the

function class for some fixed constant 𝑅𝑄 > 0. Then, for any ℎ ∈ [𝐻]
and any 𝑄 : S × A → [0, 𝐻], it holds that Bℎ𝑉 ∈ Q∗ for 𝑉 (𝑠) =
max𝑎∈A 𝑄 (𝑠, 𝑎).

A sufficient condition for Assumption 3.2 to hold is when S =

[0, 1]𝑚 and that 𝑟ℎ (·, ·),Pℎ (𝑠′ | ·, ·) ∈
{
𝑓 ∈ H𝑘 : ∥ 𝑓 ∥H𝑘 ≤ 1

}
for

all ℎ ∈ [𝐻],∀𝑠′ ∈ S. To see this, suppose this condition holds, then

for any integrable 𝑉 : S → [0, 𝐻] holds,

∥𝑟ℎ + Pℎ𝑉 ∥H𝑘 ≤ ∥𝑟ℎ ∥H𝑘 + ∥Pℎ𝑉 ∥H𝑘

≤ 1 +
∫
𝑠′∈S

Pℎ (𝑠′ |·, ·)𝑉 (𝑠′) 𝑑𝑠′

H𝑘

≤ 1 +
∫
𝑠′∈S

∥Pℎ (𝑠′ |·, ·)𝑉 (𝑠′)∥H𝑘 𝑑𝑠
′

= 1 +
∫
𝑠′∈S

∥Pℎ (𝑠′ |·, ·)∥H𝑘 ∥𝑉 (𝑠
′)∥H𝑘 𝑑𝑠

′

≤ 1 + 𝐻
∫
𝑠′∈S

𝑑𝑠′ = 𝐻 + 1.

Note that under the assumptions of measurability and boundedness

on the kernel 𝑘 , ∥Pℎ𝑉 ∥H𝑘 ∈ H𝑘 , which is given in Muandet et al.

[23, section 3.1]. Thus, Assumption 3.2 holds with 𝑅𝑄 = 2. This

assumption is mild and is also used in Yang et al. [41]. Similar

assumptions are used in linear MDP’s, which are much stricter

[18, 48].

3.4 Pessimistic Value Iteration and Kernel
Setting

We consider the pessimistic value iteration, i.e., PEVI [18] algo-

rithm, described in Algorithm 2, as the backbone algorithm. This

is a model-free, theoretically guaranteed offline algorithm. The

fundamental insight of PEVI lies in the incorporation of a penalty

function, which essentially introduces a sense of pessimism, into

the value iteration algorithm. The key challenge to extend PEVI

to kernel setting is that the dimension (even effective dimension)

of the kernel based model (when interpreted as linear model) is

divergent. In addition, we apply the data splitting method [24, 39].

As introduced in Rashidinejad et al. [24], data splitting makes sure

that the estimated value 𝑉ℎ+1 and estimated Bellman operator B̂ℎ
are estimated using different subsets of D, this yields conditional

independence that is required in bounding concentration terms

of the form

(
B̂ℎ − Bℎ

)
𝑉ℎ+1, and hence the suboptimality can be

reduced by a factor of

√
𝑑 . However, applied naively, this data split-

ting induces one undesired

√
𝐻 factor in the optimality as we need

to split D into 𝐻 folds and thus each Bℎ is estimated using only

𝑁 /𝐻 episodes of data. Further details of the PEVI algorithm can be

found in Appendix A.2.

4 UNSUPERVISED DATA SHARING
Our algorithm comprises two main components. The first part

involves employing kernel ridge regression to learn the reward

function using the labeled dataset and constructing the confidence

set. Next, to mitigate overestimation in reward prediction, we con-

struct the pessimism reward parameter
˜𝜃 within the confidence

set. Section 4.1 discusses this in more detail. The second part in-

volves using the pessimistic reward estimator
˜𝜃 to relabel the entire

dataset, which is a combination of the labeled dataset and the rela-

beled dataset. Following this, we employ the PEVI algorithm with

kernel approximation and data splitting (refer to Algorithm 3) to

determine the optimal policy. The detailed steps of the algorithm

are outlined in Algorithm 1.

Algorithm 1 Data Sharing, Kernel Approximation

1: Data: Labeled dataset D1, and unlabeled dataset D2.

2: Input: Parameter 𝛽ℎ (𝛿), 𝛿, 𝐵, 𝜈, 𝜆.
3: Define D𝜃 , which is a combination of the labeled dataset D1

and the unlabeled dataset D𝜃
2
, and partition the dataset D𝜃

into 𝐻 disjoint and equally sized sub datasets {D̃𝜃
ℎ
}𝐻
ℎ=1

.

4: Learn the reward function 𝜃1, · · · , 𝜃𝐻 from D1 with

𝜃ℎ = argmin

𝜃ℎ∈H𝑘

𝑁1∑︁
𝜏=1

[
𝑟𝜏
ℎ
− �̂�𝜃ℎ

ℎ
(𝑠′𝜏ℎ, 𝑎

′𝜏
ℎ)

]
2

+ 𝜈 ∥𝜃ℎ ∥2H𝑘 .

5: Construct the pessimistic reward function with parameter
˜𝜃 :=

{ ˜𝜃ℎ}𝐻ℎ=1
satisfy

𝑟
˜𝜃ℎ
ℎ
(𝑠, 𝑎) = max

{〈
𝜃ℎ, 𝜙 (𝑠, 𝑎)

〉
H𝑘
− 𝛽ℎ (𝛿)

(ΛD1

ℎ
)−

1

2𝜙 (𝑠, 𝑎)

H𝑘

, 0

}
.

(4)

6: Annotate the reward in D𝜃 with parameter 𝜃 = 𝜃 .

7: Learn the policy from the relabeled datasetD𝜃 using Algorithm
3 in Appendix.

{𝜋ℎ}𝐻ℎ=1
← PEVI

(
D𝜃 , 𝐵, 𝜆

)
.

8: Result: 𝜋 = {𝜋ℎ}𝐻ℎ=1
.

4.1 Pessimistic Reward Estimation
We utilize labeled datasetD1 to train a reward function �̂�

𝜃ℎ
ℎ

, using it

to label the unlabeled data. Assume that the observed reward is gen-

erated as 𝑟𝜏
ℎ
= 𝑟ℎ (𝑠′𝜏ℎ, 𝑎

′𝜏
ℎ
) + 𝜖𝜏

ℎ
where 𝑟ℎ : (𝑠, 𝑎) ↦→ ⟨𝜃∗

ℎ
, 𝜙 (𝑠, 𝑎)⟩H𝑘

satisfies 𝑟ℎ (𝑠, 𝑎) ∈ [0, 1] for all (𝑠, 𝑎) ∈ S × A, and 𝜖𝜏
ℎ
are i.i.d. cen-

tered 1-SubGaussian noise. Here 𝜃∗
ℎ
∈ H𝑘 is an unknown parameter,

and 𝜙 : S × A → H𝑘 is a known feature map defined in Section

3.3. Furthermore, we assume that ∥𝜃∗
ℎ
∥H𝑘 ≤ S. We learn the re-

ward function from labeled data through a kernel ridge regression

problem. Using the feature representation, we write

𝜃ℎ = argmin

𝜃ℎ∈H𝑘

𝑁∑︁
𝜏=1

[
𝑟𝜏
ℎ
− �̂�𝜃ℎ

ℎ
(𝑠′𝜏ℎ, 𝑎

′𝜏
ℎ)

]
2

+ 𝜈 ∥𝜃ℎ ∥2H𝑘 , (5)

where �̂�
𝜃ℎ
ℎ
(𝑠, 𝑎) = ⟨𝜙 (𝑠, 𝑎) , 𝜃ℎ⟩H𝑘 with parameter 𝜃ℎ . However,

this method leads to an overestimation of predicted reward values,

as highlighted in Yu et al. [45]. A novel algorithm called Provable

Data Sharing (PDS) is introduced in Hu et al. [15] to mitigate this

problem. PDS incorporates uncertainty penalties into the learned

reward functions and integrates seamlessly with existing offline RL

algorithms in a linear MDP setting. We extend the application of

this algorithm to the kernel setting.

To address the problem of overestimating predicted rewards,

we analyze the uncertainty in the learned reward function. The

previous solution defines the center of the ellipsoidal confidence

set:

Cℎ (𝛿) =
{
𝜃 ∈ H𝑘 :

𝜃 − ˆ𝜃ℎ

Λ
D

1

ℎ

≤ 𝛽ℎ (𝛿)
}
, (6)

where ΛD1

ℎ
=

∑𝑁1

𝜏=1
𝜙 (𝑠′𝜏

ℎ
, 𝑎′𝜏

ℎ
)𝜙 (𝑠′𝜏

ℎ
, 𝑎′𝜏

ℎ
)⊤ + 𝜈𝐼H𝑘 is a positive

definite operator, ∥𝜃 ∥2
Λ
D

1

ℎ

=

〈
𝜃,ΛD1

ℎ
𝜃

〉
H𝑘

, and 𝛽ℎ (𝛿) is its radius

which follows Proposition 4.1.

Proposition 4.1. We define 𝛽ℎ (𝛿) with the labeled data set D1

by 𝛽ℎ (𝛿) =
√
𝜈S+

√︂
log

det

[
𝜈𝐼+𝐾D1

ℎ

]
𝛿2

, where 𝐾D1

ℎ
is the Gram matrix

constructed from the dataset D1 as
[
𝐾
D1

ℎ

]
𝜏,𝜏 ′

= 𝑘 (𝑧′𝜏
ℎ
, 𝑧′𝜏

′

ℎ
), where

𝑧′𝜏
ℎ
= (𝑠′𝜏

ℎ
, 𝑎′𝜏

ℎ
) for 𝜏, 𝜏 ′ ∈ [𝑁1] and for each ℎ ∈ [𝐻] and 𝛿 ∈ (0, 1).

Then, with probability at least 1 − 𝛿 we have
𝜃ℎ − 𝜃∗ℎΛD1

ℎ

≤ 𝛽ℎ (𝛿),

where 𝜃ℎ is the solution of equation (5). Furthermore, consider the
information gain 𝐺 (𝑁,𝜈), defined in equation (2) of the matrix 𝐾D1

ℎ
and set 𝜈 = 1 + 1/𝑁1, 𝛽ℎ (𝛿) is rewritten as

√
𝜈S +

√︂
2𝐺 (𝑁1, 𝜈) + 1 + log

1

𝛿2
. (7)

Moreover, defineCℎ (𝛿) =
{
𝜃 ∈ H𝑘 :

𝜃 − 𝜃ℎ
Λ
D

1

ℎ

≤ 𝛽ℎ (𝛿)
}
, we have

P(𝜃∗
ℎ
∈ 𝐶ℎ (𝛿)) ≥ 1 − 𝛿 .

Proof. Please refer to Appendix A.2.1 for detailed proof. □

In Proposition 4.1, the uncertainty of the learned reward function

depends on the maximum information gain of the kernel matrix

𝐾
D1

ℎ
. However, finding the optimal parameter within the confidence

set is computationally inefficient. To address this challenge, Hu

et al. [15] proposes an approach that preserves the pessimistic

property of the offline algorithm. This method uses pessimistic

estimation, allowing the algorithm to remain pessimistic while

mitigating computational challenges. Formally, we construct the

pessimistic reward function 𝑟
˜𝜃ℎ
ℎ
(𝑠, 𝑎) for the parameter

˜𝜃ℎ as

𝑟
˜𝜃ℎ
ℎ
(𝑠, 𝑎) = max

{〈
𝜃ℎ, 𝜙 (𝑠, 𝑎)

〉
H𝑘
− 𝛽ℎ (𝛿)

(ΛD1

ℎ
)−

1

2𝜙 (𝑠, 𝑎)

H𝑘

, 0

}
.

(8)

The equation (8) is guaranteed by the following lemma derived

from Cauchy-Schwarz inequalities.

Lemma 4.2.

����〈𝜃ℎ − 𝜃ℎ, 𝜙 (𝑠, 𝑎)〉H𝑘
���� ≤ 𝛽ℎ (𝛿) (ΛD1

ℎ
)−

1

2𝜙 (𝑠, 𝑎)

H𝑘

for any 𝜃ℎ ∈ Cℎ (𝛿), ℎ ∈ [𝐻].

The equation (8) provides a lower bound for the reward function
within the confidence set C(𝛿). When the labeled data is scarce,

or when there is a significant shift in the distribution between the

labeled and unlabeled data, the confidence interval becomes wider

and then the equation (8) degenerates to 0, which is reduced to the

UDS algorithm [15, 45].

4.2 Theoretical Analysis
The suboptimality of the Algorithm 1 is characterized by the fol-

lowing theorem.

Theorem 4.3. Consider the MDP described in Section 3.1. Under
Assumption 3.1 and Assumption 3.2, and suppose the labeled dataset
D1 and unlabeled datasetD𝜃

2
are defined in Section 3.2. DefineD𝜃 =

{(𝑠𝜏
ℎ
, 𝑎𝜏
ℎ
, �̂�
𝜃ℎ
ℎ
(𝑠𝜏
ℎ
, 𝑎𝜏
ℎ
))}𝑁,𝐻

𝜏,ℎ=1
, which is a combination of labeled dataset

D1 and unlabeled dataset D𝜃
2
with 𝑁 = 𝑁1 + 𝑁2. We partition

dataset D𝜃 into 𝐻 disjoint and equally sized sub dataset {D̃𝜃
ℎ
}𝐻
ℎ=1

,

where |D̃𝜃
ℎ
| = 𝑁ℎ = 𝑁 /𝐻 . Let Iℎ = {𝑁ℎ · (ℎ − 1) + 1, . . . , 𝑁ℎ · ℎ} ={

𝜏ℎ,1, · · · , 𝜏ℎ,𝑁ℎ
}
satisfy D̃𝜃

ℎ
= {(𝑠𝜏

ℎ
, 𝑎𝜏
ℎ
, 𝑟𝜏
ℎ
)}𝜏∈Iℎ . We set 𝜆 = 1 +

1

𝑁
, 𝜈 = 1 + 1

𝑁1

in Algorithm 1, where

𝛽ℎ (𝛿) =

√︃
𝑁1+1
𝑁1

S +
√︃
𝐶1𝑑 log𝑁1 + log(1

𝛿2
) 𝑑-finite spectrum,√︃

𝑁1+1
𝑁1

S +
√︃
𝐶1 (log𝑁1)1+

1

𝑑 + log(1

𝛿2
) 𝑑-exponential decay,√︃

𝑁1+1
𝑁1

S +
√︂
𝐶1𝑁

𝑚+1
𝑑+𝑚

1
log(𝑁1) + log(1

𝛿2
) 𝑑-polynomial decay.

𝐵 =

𝐶2 · 𝐻 ·

√︁
𝑑 log (𝑁 /𝛿) 𝑑-finite spectrum,

𝐶2 · 𝐻 ·
√︃
(log𝑁 /𝛿)1+1/𝑑 𝑑-exponential decay,

𝐶2 · 𝑁
𝑚+1

2(𝑑+𝑚) 𝐻
1− 𝑚+1

2(𝑑+𝑚) ·
√︁

log(𝑁 /𝛿) 𝑑-polynomial decay.

Here,𝐶1,𝐶2 > 0 are absolute constants that does not depend on 𝑁1, 𝑁 ,
nor 𝐻 . Then, for fixed initial state 𝑠0 ∈ S, with probability 1− 2𝛿 , the
policy 𝜋 generated by Algorithm 1 satisfies

SubOpt(𝜋 ; 𝑠0) ≤ 2

𝐻∑︁
ℎ=1

𝛽ℎ (𝛿)E𝜋∗
[
∥𝜙 (𝑠ℎ, 𝑎ℎ)∥ (ΛD1

ℎ
)−1
| 𝑠1 = 𝑠0

]
+ 2𝐵

𝐻∑︁
ℎ=1

E𝜋∗
∥𝜙 (𝑠ℎ, 𝑎ℎ)∥ (ΛD̃𝜃ℎℎ)−1

| 𝑠1 = 𝑠0

 ,
where ˜𝜃 is defined in equation 4.

Proof. For a detailed proof, see Appendix A.2.2. □

Two key terms express the suboptimality bound. The first term is

the reward bias introduced by uncertainties in estimating rewards.

This term reflects the challenges and inaccuracies associated with

predicting or estimating rewards in a given environment. The sec-

ond term represents the offline algorithm and optimal policy 𝜋∗

error.

Remark 4.4. We use the Lemma A.7 to rewrite the term of 𝛽ℎ (𝛿)
and 𝐵 in the Theorem 4.3 as 𝛽ℎ (𝛿) = ˜O(

√︃
𝐺 (𝑁1, 1 + 1

𝑁1

)) and 𝐵 =

˜O(𝐻
√︃
𝐺 (𝑁, 1 + 1

𝑁
)).

By Remark 4.4, both terms 𝛽ℎ (𝛿) and 𝐵 depend on the kernel

function class. It is worth noting that the term ∥𝜙 (𝑠ℎ, 𝑎ℎ)∥ (ΛD
ℎ
)−1

can be expressed as an information quantity for the dataset D, as

outlined in Lemma 4.5.

Proposition 4.5. We partition dataset D into 𝐻 disjoint and
equally sized sub datasets {D̃ℎ}𝐻ℎ=1

, where D̃ℎ = {(𝑠𝜏
ℎ
, 𝑎𝜏
ℎ
, 𝑟𝜏
ℎ
)}𝜏∈Iℎ

with Iℎ = {𝑁ℎ · (ℎ − 1) + 1, . . . , 𝑁ℎ · ℎ} =
{
𝜏ℎ,1, · · · , 𝜏ℎ,𝑁ℎ

}
for all

ℎ ∈ [𝐻], and 𝑁ℎ = 𝑁 /𝐻 . Denote the operator ΦD̃ℎ
ℎ

: H𝑘 → R𝑁ℎ ,

and ΛD̃ℎ
ℎ

: H𝑘 →H𝑘 as

ΦD̃ℎ
ℎ

=

©«
𝜙

(
𝑧
𝜏ℎ,1
ℎ

)⊤
.
.
.

𝜙

(
𝑧
𝜏ℎ,𝑁ℎ
ℎ

)⊤
ª®®®®®¬
=

©«
𝑘

(
·, 𝑧𝜏ℎ,1
ℎ

)⊤
.
.
.

𝑘

(
·, 𝑧𝜏ℎ,𝑁ℎ
ℎ

)⊤
ª®®®®®¬
,

ΛD̃ℎ
ℎ

= 𝜆 · 𝐼H + (Φ
D̃ℎ
ℎ
)⊤ΦD̃ℎ

ℎ
.

Define gram matrix 𝐾 D̃ℎ
ℎ

= ΦD̃ℎ
ℎ
(ΦD̃ℎ
ℎ
)⊤. Then, for any 𝑧 ∈ Z, we

have

𝜙 (𝑧)⊤ (ΛD̃ℎ
ℎ
)−1𝜙 (𝑧)

≤ 2 ·
[
log det

(
𝐼 + 𝐾 D̃

′
ℎ

ℎ
/𝜆

)
− log det

(
𝐼 + 𝐾 D̃ℎ

ℎ
/𝜆

)]
,

(9)

where D̃′
ℎ
is the combination of dataset D̃ℎ and 𝑧 which satisfies

Λ
D̃′
ℎ

ℎ
= ΛD̃ℎ

ℎ
+ 𝜙 (𝑧)𝜙 (𝑧)⊤.

Proof. For a detailed proof, see Appendix A.2.3. □

Remark 4.6. In Proposition 4.5,H𝑘 can be infinite dimensional.

However, for the sake of clarity, we represent ΦD̃ℎ
ℎ

as a matrix and
𝜙 (𝑧𝜏

ℎ
) as a column vector for all 𝜏 ∈ Iℎ .

Here, we define

𝜁ℎ (D′,D) = 2

[
log det

(
𝐼 + 𝐾D

′

ℎ
/𝜆

)
− log det

(
𝐼 + 𝐾D

ℎ
/𝜆

)]
, (10)

as the maximal information amount between the dataset D′ and
D. Proposition 4.5 states that if the training data set is well known

about 𝑧, then equation (10) will be close to zero. On the other hand,

if the training data set is not well known about 𝑧, then equation

(10) will be large.

We specialize the 𝑑-finite spectrum case of Theorem 4.3 under a

weak data coverage assumption to better understand the conver-

gence of Algorithm 1.

Assumption 4.7 (Weak Convergence). Suppose the dataset
D = {(𝑠𝜏

ℎ
, 𝑎𝜏
ℎ
, 𝑟𝜏
ℎ
)}𝑁,𝐻
𝜏,ℎ=1

consists of 𝑁 trajectories, for all ℎ ∈ [𝐻], the
trajectories are drawn independently and identically from distribu-
tions induced by some fixed behavior policy 𝜋 such that there exists a
constant 𝑐min > 0 satisfying inf ∥ 𝑓 ∥H𝑘 =1

⟨𝑓 ,E𝜋
[
𝜙 (𝑧ℎ)𝜙 (𝑧ℎ)⊤

]
𝑓 ⟩ ≥

𝑐min for any ℎ ∈ [𝐻].

Intuitively, Assumption 4.7 posits that the collected data should

be relatively well distributed throughout the state action space.

Notably, assumption 4.7 shares similarities with other explorability

assumptions common in reinforcement learning literature, such as

those in Wagenmaker and Pacchiano [36], Yin et al. [43].

Corollary 4.8 (Well-Explored Dataset). In the 𝑑-finite spec-
trum case, assume that the Assumption 4.7 holds under the same

conditions as Theorem 4.3. Then for 𝑁1 ≥ Ω(log(𝑑𝐻/𝛿)) and 𝑁 ≥
𝐻 · Ω(log(𝑑𝐻/𝛿)), with probability at least 1 − 𝛿 , we have

SubOpt(𝜋 ; 𝑠) ≤ 2𝛽ℎ (𝛿) · 𝐻 · 𝑐′/
√︁
𝑁1 + 2𝐵 · 𝐻 · 𝑐′/

√︁
𝑁ℎ

≤ ˜O(𝐻

√︄
𝑑

𝑁1

) + ˜O(𝐻
5

2

√︄
𝑑

𝑁2

) .
(11)

In the 𝑑-finite spectrum case, a significant difference between

our present study and previous work [15] lies in the incorporation

of factors

√
𝑑 and

√
𝐻 , introduced by the implementation of the

data splitting technique [39]. This technique plays a crucial role in

the linear case, influencing the overall convergence behavior of the

learned policy. If we aim to transform the feature mapping from a

dimensionality of 𝑑 to 𝑑′, where 𝑑′ > 𝑑 . In this context, the data

partitioning method can help mitigate the convergence of the error

bound. Finally, we combine the result in Therorem 4.3, Remark 4.4,

and Corollary 4.8 to get the Table 1.

Remark 4.9. For Assumption 4.7, the scenarios involving𝑑-exponen-
tial and 𝑑-polynomial decay are not generally valid. If Assumption 4.7
holds true, by integrating Lemma A.3, Lemma A.4, and equation (89),
we can deduce the explicit form of SubOpt(𝜋 ; 𝑠) as

SubOpt(𝜋 ; 𝑠) =

˜O
(
𝐻𝑁
− 1

2

1

)
+ ˜O

(
𝐻

5

2𝑁
− 1

2

2

)
d-exponential decay,

˜O
(
𝐻𝑁
− 1

2
+𝑚+1
𝑑+𝑚

1

)
+ ˜O

(
𝐻

5

2
− 𝑚+1

2(𝑑+𝑚) 𝑁
− 1

2
+ 𝑚+1

2(𝑑+𝑚)
2

)
d-polynomial decay.

(12)

Nonetheless, Assumption 4.7 does not generally hold under scrutiny.
To demonstrate this, let’s assume that Assumption 4.7 is true. It
means that for every 𝑓 within the set {∥ 𝑓 ∥H𝑘 = 1}, it satisfies
E�̃� [⟨𝑓 , 𝜙 (𝑧ℎ)𝜙 (𝑧ℎ)⊤ 𝑓 ⟩] ≥ 𝑐min. Then, we express 𝜙 and 𝑓 as 𝜙 =∑∞
𝑖=1

𝑎𝑖𝜓𝑖 and 𝑓 =
∑∞
𝑖=1

𝑏𝑖𝜓𝑖 respectively, where {𝜓𝑖 }∞𝑖=1
is orthonor-

mal basis ofH𝑘 . Given that 𝑓 can represent any function satisfying
∥ 𝑓 ∥H𝑘 = 1, let 𝑓 be any vector such that 𝑓 = 𝑏 𝑗𝜓 𝑗 for an arbitrary
𝑗 . Consequently, for all 𝑗 , the expectation E�̃� [⟨𝑓 , 𝜙 (𝑧ℎ)𝜙 (𝑧ℎ)⊤ 𝑓 ⟩] =
𝑎2

𝑗
≥ 𝑐min is satisfied, which results in a paradox because the norm

should be finite; however, ∥𝜙 ∥H𝑘 =
∑∞
𝑗=1

𝑎 𝑗
2 ≥ ∑∞

𝑗=1
𝑐𝑚𝑖𝑛 = ∞.

5 EXPERIMENTS
In the following experiments, we execute Algorithm 1 to obtain

a policy 𝜋 and the corresponding value function 𝑉 𝜋
1
(𝑠), where 𝑠

is sampled from the initial distribution 𝜌 (𝑠). For our experiment,

we select the Squared Exponential kernel from equation (3) as the

kernel function𝐾 . With this choice of kernel, the pessimistic reward

function 𝑟
˜𝜃ℎ
ℎ
(𝑠, 𝑎), as defined in equation (8), can be computed using

the following expression:

𝑟
˜𝜃ℎ
ℎ
(𝑠, 𝑎) = 𝑘D1

ℎ
(𝑠, 𝑎)⊤

(
𝐾
D1

ℎ
+ 𝜈𝐼

)−1

𝑦ℎ

− 𝛽ℎ (𝛿) · 𝜈−1/2 ·
(
𝐾

(
(𝑠, 𝑎), (𝑠, 𝑎)

)
− 𝑘D1

ℎ
(𝑠, 𝑎)⊤

(
𝐾
D1

ℎ
+ 𝜈𝐼

)−1

𝑘
D1

ℎ
(𝑠, 𝑎)

)
1/2

We implemented our algorithm using Python’s NumPy library. To

ensure reproducibility, our experimental code is publicly accessible
1
.

Further details on the experimental settings can also be found in

this repository.

5.1 Asymptotic Behavior of 𝑉 𝜋
1
(𝑠)

In this experiment, we investigate the asymptotic behavior of𝑉 𝜋
1
(𝑠).

Although we are unable to theoretically validate the correctness of

equation (12) due to the violation of Assumption 4.7, we provide em-

pirical evidence that, when the kernel function is the Squared Expo-

nential kernel satisfying 𝑑-exponential decay, its asymptotic behav-

ior closely aligns with equation (12). We create an toy example of RL

environment whichmeets Assumption 3.2, ensuring bounded RKHS

norms for 𝑟ℎ (·, ·) and P(𝑠′ |·, ·). The MDPM = (S,A, 𝐻,P, 𝑟) for
this toy example is as follows.

S = [0,𝐶], A = {0, 1, ...,𝐶}, 𝐻 = 𝐶,

Pℎ (𝑠′ | 𝑠, 𝑎) = exp

[
−𝛼

(
𝑠′ − ((𝑠 + 𝑎) mod 𝐶)

)
2
] /√︁

𝜋/𝛼,

𝑟 (𝑠, 𝑎) = exp

[
−𝛼 (𝑠 −𝐶/2)2

] /√︁
𝜋/𝛼,

where 𝛼 and 𝐶 are constants, set to 𝛼 = 3 and 𝐶 = 8 in our ex-

periment. To ensure that 𝑠′ remains within the state space S, we
replace 𝑠′ by “𝑠′ mod 𝐶” after sampling 𝑠′ ∼ Pℎ (·|𝑠, 𝑎). To examine

the asymptotic behavior of 𝑉 𝜋
1
(𝑠), we varied the parameters 𝑁1

and 𝑁2 and plotted the resulting values of𝑉 𝜋
1
(𝑠) in the left column

of Fig. 1. For asymptotic approximation, using equation (12),𝑉 𝜋
1
(𝑠)

can be expressed in the following form:

𝑉 𝜋
1
(𝑠) = 𝑐 − 𝑎𝑁 −

1

2

1
− 𝑏𝑁 −

1

2

2
,

where 𝑎, 𝑏, and 𝑐 are constants. By applying linear regression to

the experimental data (left column of Fig. 1), we estimated these

constants and plotted the corresponding curve in the right col-

umn of Fig. 1. The strong agreement between the experimental

results and the asymptotic approximation validates our hypothesis

that the asymptotic behavior of 𝑉 𝜋
1
(𝑠) conforms to our theoretical

predictions.

200 400

3

4

5

6

𝑁
2

𝑉
𝜋 1
(𝑠
)

Experimental Values of𝑉𝜋
1
(𝑠)

𝑁
1
= 10

𝑁
1
= 20

𝑁
1
= 50

𝑁
1
= 100

200 400

3

4

5

6

𝑁
2

𝑉
𝜋 1
(𝑠
)

Asymptotic Approximation of𝑉𝜋
1
(𝑠)

𝑁
1
= 10

𝑁
1
= 20

𝑁
1
= 50

𝑁
1
= 100

Figure 1: Comparison of experimental values and asymptotic
approximation of 𝑉 𝜋

1
(𝑠).

1
https://github.com/d09942015ntu/leveraging_unlabeled_offline_rl

https://github.com/d09942015ntu/leveraging_unlabeled_offline_rl

5.2 Comparison between Finite Dimensional
and Kernel Features

In this experiment, we present a real-world example demonstrating

the superior performance of our kernel-based offline RL method

compared to finite-dimensional feature representations 𝜙 , which

follows the setting of [15] but in a finite-horizon scenario. We

select the CartPole environment from OpenAI Gym
2
as our test

environment. To implement the 𝜙 function used in their work, we

consider three different realizations of 𝜙 (𝑠, 𝑎)—linear, quadratic,
and cubic—denoted as 𝜙

lin
, 𝜙

quad
, and 𝜙

cubic
, respectively, which

are defined as follows:

𝜙
lin

= (1, 𝑥1, 𝑥2, · · · , 𝑥𝑛)
𝜙
quad

= (1, 𝑥1, 𝑥2, · · · , 𝑥𝑛, 𝑥2

1
, 𝑥1𝑥2, · · · , 𝑥𝑛−1𝑥𝑛, 𝑥

2

𝑛)
𝜙
cubic

= (1, 𝑥1, 𝑥2, · · · , 𝑥𝑛, 𝑥2

1
, 𝑥1𝑥2, · · · , 𝑥𝑛−1𝑥𝑛, 𝑥

2

𝑛, 𝑥
3

1
,

𝑥2

1
𝑥2, 𝑥1𝑥2𝑥3, · · · , 𝑥𝑛−2𝑥𝑛−1𝑥

2

𝑛, 𝑥𝑛−1𝑥
2

𝑛, 𝑥
3

𝑛)
where 𝑥1, · · · , 𝑥𝑛 is the elements in the concatenation of (𝑠, 𝑎). We

compare these three finite-dimensional feature representationswith

our kernel-based RL method using the Squared Exponential ker-

nel feature, denoted as 𝜙𝐾 , under various configurations of 𝑁1

and 𝑁2. The results are presented in Fig. 2. Our findings suggest

that, the kernel-based 𝜙𝐾 generally outperforms alternative finite-

dimensional 𝜙 approaches when 𝑁2 ≤ 500. The performance gap

between𝜙𝐾 and other𝜙 becomesmore pronounced when𝑁2 ≤ 100.

This indicates that kernel methods, with their more flexible function

approximation, better capture the reward and transition dynam-

ics—particularly when unlabeled data is scarce—resulting in higher

value estimates compared to finite-dimensional 𝜙 representations.

200 400

−50

0

50

𝑁
2

𝑉
𝜋 1
(𝑠
)

Values of𝑉𝜋
1
(𝑠) when𝑁

1
= 20

𝜙𝐾 (𝑧)
𝜙
cub
(𝑧)

𝜙
quad

(𝑧)
𝜙
lin
(𝑧)

200 400

−50

0

50

𝑁
2

𝑉
𝜋 1
(𝑠
)

Values of𝑉𝜋
1
(𝑠) when𝑁

1
= 50

𝜙𝐾 (𝑧)
𝜙
cub
(𝑧)

𝜙
quad

(𝑧)
𝜙
lin
(𝑧)

200 400

−50

0

50

𝑁
2

𝑉
𝜋 1
(𝑠
)

Values of𝑉𝜋
1
(𝑠) when𝑁

1
= 100

𝜙𝐾 (𝑧)
𝜙
cub
(𝑧)

𝜙
quad

(𝑧)
𝜙
lin
(𝑧)

200 400

−50

0

50

𝑁
2

𝑉
𝜋 1
(𝑠
)

Values of𝑉𝜋
1
(𝑠) when𝑁

1
= 200

𝜙𝐾 (𝑧)
𝜙
cub
(𝑧)

𝜙
quad

(𝑧)
𝜙
lin
(𝑧)

Figure 2: Comparison the values of 𝑉 𝜋
1
(𝑠) between finite di-

mensional features and kernel features.

2
https://www.gymlibrary.dev/environments/classic_control/cart_pole/

6 CONCLUSION
In this paper, we demonstrate that incorporating unlabeled data

into offline RL can greatly improve offline RL performance. Our

theoretical analysis shows how unlabeled data can improve the

performance of offline RL, especially in a more general function

approximation setting, in contrast to the results in Hu et al. [15]. Our

analysis is based on the common offline RL assumption about the

dataset, providing a comprehensive examination of the algorithm’s

performance under these conditions. In future work, it may be

interesting to extend to the discounted MDP setting to deal with

more category problems and the low-rank MDP [33].

ACKNOWLEDGMENTS
This work was supported in part by the Ministry of Education

(MOE) of Taiwan under Grant NTU-111L891406, the Asian Office

of Aerospace Research and Development (AOARD) under Grant

NTU-112HT911020, the Center of Data Intelligence: Technologies,

Applications, and Systems, National Taiwan University (grant nos.

111L900901/111L900902/111L900903), from the Featured Areas Re-

search Center Program within the framework of the Higher Educa-

tion Sprout, the Ministry of Education (MOE) of Taiwan, and the

financial supports from the Featured Area Research Center Program

within the framework of the Higher Education Sprout Project by

the Ministry of Education (111L900901/111L900902/111L900903).

REFERENCES
[1] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. 2011. Improved algo-

rithms for linear stochastic bandits. Advances in neural information processing
systems 24 (2011).

[2] Nachman Aronszajn. 1950. Theory of reproducing kernels. Transactions of the
American mathematical society 68, 3 (1950), 337–404.

[3] Alain Berlinet and Christine Thomas-Agnan. 2011. Reproducing kernel Hilbert
spaces in probability and statistics. Springer Science & Business Media.

[4] Jose Blanchet, Miao Lu, Tong Zhang, and Han Zhong. 2024. Double pessimism

is provably efficient for distributionally robust offline reinforcement learning:

Generic algorithm and robust partial coverage. Advances in Neural Information
Processing Systems 36 (2024).

[5] Qi Cai, Zhuoran Yang, Chi Jin, and Zhaoran Wang. 2020. Provably efficient ex-

ploration in policy optimization. In International Conference on Machine Learning.
PMLR, 1283–1294.

[6] Annie S Chen, Suraj Nair, and Chelsea Finn. 2021. Learning generalizable robotic

reward functions from" in-the-wild" human videos. Robotics: Science and Systems
(RSS) (2021).

[7] Sayak Ray Chowdhury and Aditya Gopalan. 2017. On kernelized multi-armed

bandits. In International Conference on Machine Learning. PMLR, 844–853.

[8] Yaqi Duan, Zeyu Jia, and Mengdi Wang. 2020. Minimax-optimal off-policy

evaluation with linear function approximation. In International Conference on
Machine Learning. PMLR, 2701–2709.

[9] Ben Eysenbach, Xinyang Geng, Sergey Levine, and Russ R Salakhutdinov. 2020.

Rewriting history with inverse rl: Hindsight inference for policy improvement.

Advances in neural information processing systems 33 (2020), 14783–14795.
[10] Chelsea Finn, Sergey Levine, and Pieter Abbeel. 2016. Guided cost learning: Deep

inverse optimal control via policy optimization. In International conference on
machine learning. PMLR, 49–58.

[11] Justin Fu, Katie Luo, and Sergey Levine. 2017. Learning robust rewards with ad-

versarial inverse reinforcement learning. In International Conference on Learning
Representations.

[12] Justin Fu, Avi Singh, Dibya Ghosh, Larry Yang, and Sergey Levine. 2018. Varia-

tional inverse control with events: A general framework for data-driven reward

definition. Advances in neural information processing systems 31 (2018).
[13] Jonathan Ho and Stefano Ermon. 2016. Generative adversarial imitation learning.

Advances in neural information processing systems 29 (2016).
[14] Hao Hu, Yiqin Yang, Jianing Ye, Chengjie Wu, Ziqing Mai, Yujing Hu, Tangjie

Lv, Changjie Fan, Qianchuan Zhao, and Chongjie Zhang. 2024. Bayesian De-

sign Principles for Offline-to-Online Reinforcement Learning. arXiv preprint
arXiv:2405.20984 (2024).

https://www.gymlibrary.dev/environments/classic_control/cart_pole/

[15] Hao Hu, Yiqin Yang, Qianchuan Zhao, and Chongjie Zhang. 2023. The provable

benefits of unsupervised data sharing for offline reinforcement learning. In The
Eleventh International Conference on Learning Representations. https://openreview.
net/forum?id=MTTPLcwvqTt

[16] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. 2019. When to trust

your model: Model-based policy optimization. Advances in neural information
processing systems 32 (2019).

[17] Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. 2018. Is

Q-learning provably efficient? Advances in neural information processing systems
31 (2018).

[18] Ying Jin, Zhuoran Yang, and ZhaoranWang. 2021. Is pessimism provably efficient

for offline rl?. In International Conference on Machine Learning. PMLR, 5084–5096.

[19] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric

Jang, Deirdre Quillen, EthanHolly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al.

2018. Scalable deep reinforcement learning for vision-based robotic manipulation.

In Conference on Robot Learning. PMLR, 651–673.

[20] Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Benjamin Swanson, Rico

Jonschkowski, Chelsea Finn, Sergey Levine, and Karol Hausman. 2021. Mt-opt:

Continuous multi-task robotic reinforcement learning at scale. arXiv preprint
arXiv:2104.08212 (2021).

[21] Ilya Kostrikov, Ofir Nachum, and Jonathan Tompson. 2019. Imitation learning

via off-policy distribution matching. In International Conference on Learning
Representations.

[22] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. 2020. Offline rein-

forcement learning: Tutorial, review, and perspectives on open problems. arXiv
preprint arXiv:2005.01643 (2020).

[23] Krikamol Muandet, Kenji Fukumizu, Bharath Sriperumbudur, Bernhard

Schölkopf, et al. 2017. Kernel mean embedding of distributions: A review and

beyond. Foundations and Trends® in Machine Learning 10, 1-2 (2017), 1–141.

[24] Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell.

2021. Bridging offline reinforcement learning and imitation learning: A tale

of pessimism. Advances in Neural Information Processing Systems 34 (2021),

11702–11716.

[25] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George

Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-

vam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural

networks and tree search. nature 529, 7587 (2016), 484–489.
[26] Avi Singh, Larry Yang, Kristian Hartikainen, Chelsea Finn, and Sergey Levine.

2019. End-to-end robotic reinforcement learning without reward engineering.

environment (eg, by placing additional sensors) (2019).
[27] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. 2009.

Gaussian process optimization in the bandit setting: No regret and experimental

design. In Proceedings of the 27th International Conference on Machine Learning.
[28] Ingo Steinwart and Andreas Christmann. 2008. Support vector machines. Springer

Science & Business Media.

[29] Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea

Voss, Alec Radford, Dario Amodei, and Paul F Christiano. 2020. Learning to

summarize with human feedback. Advances in Neural Information Processing
Systems 33 (2020), 3008–3021.

[30] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[31] Joel A Tropp et al. 2015. An introduction to matrix concentration inequalities.

Foundations and Trends® in Machine Learning 8, 1-2 (2015), 1–230.

[32] Masatoshi Uehara and Wen Sun. 2021. Pessimistic model-based offline reinforce-

ment learning under partial coverage. arXiv preprint arXiv:2107.06226 (2021).
[33] Masatoshi Uehara, Xuezhou Zhang, and Wen Sun. 2021. Representation learning

for online and offline rl in low-rank mdps. In International Conference on Learning
Representations.

[34] Sattar Vakili, Kia Khezeli, and Victor Picheny. 2021. On information gain and

regret bounds in gaussian process bandits. In International Conference on Artificial
Intelligence and Statistics. PMLR, 82–90.

[35] Michal Valko, Nathaniel Korda, Rémi Munos, Ilias Flaounas, and Nelo Cristianini.

2013. Finite-time analysis of kernelised contextual bandits. In Uncertainty in
Artificial Intelligence.

[36] Andrew Wagenmaker and Aldo Pacchiano. 2023. Leveraging offline data in

online reinforcement learning. In International Conference on Machine Learning.
PMLR, 35300–35338.

[37] Ruosong Wang, Dean P Foster, and Sham M Kakade. 2020. What are the statis-

tical limits of offline RL with linear function approximation?. In International
Conference on Learning Representations.

[38] Ruosong Wang, Ruslan Salakhutdinov, and Lin F Yang. 2020. Provably efficient

reinforcement learning with general value function approximation. arXiv preprint
arXiv:2005.10804 (2020).

[39] Tengyang Xie, Nan Jiang, Huan Wang, Caiming Xiong, and Yu Bai. 2021. Policy

finetuning: Bridging sample-efficient offline and online reinforcement learning.

Advances in neural information processing systems 34 (2021), 27395–27407.
[40] Yuling Yan, Gen Li, Yuxin Chen, and Jianqing Fan. 2022. Model-based reinforce-

ment learning is minimax-optimal for offline zero-sum markov games. arXiv

preprint arXiv:2206.04044 (2022).
[41] Zhuoran Yang, Chi Jin, Zhaoran Wang, Mengdi Wang, and Michael I Jordan. 2020.

On function approximation in reinforcement learning: Optimism in the face of

large state spaces. arXiv preprint arXiv:2011.04622 (2020).
[42] Sing-Yuan Yeh, Fu-Chieh Chang, Chang-Wei Yueh, Pei-Yuan Wu, Alberto Bernac-

chia, and Sattar Vakili. 2023. Sample Complexity of Kernel-Based Q-Learning. In

International Conference on Artificial Intelligence and Statistics. PMLR, 453–469.

[43] Ming Yin, Yaqi Duan, Mengdi Wang, and Yu-Xiang Wang. 2022. Near-optimal

offline reinforcement learning with linear representation: Leveraging variance

information with pessimism. In International Conference on Learning Representa-
tions.

[44] Ming Yin, Mengdi Wang, and Yu-Xiang Wang. 2022. Offline reinforcement

learning with differentiable function approximation is provably efficient. arXiv
preprint arXiv:2210.00750 (2022).

[45] Tianhe Yu, Aviral Kumar, Yevgen Chebotar, Karol Hausman, Chelsea Finn, and

Sergey Levine. 2022. How to leverage unlabeled data in offline reinforcement

learning. In International Conference on Machine Learning. PMLR, 25611–25635.

[46] Tianhe Yu, Aviral Kumar, Yevgen Chebotar, Karol Hausman, Sergey Levine, and

Chelsea Finn. 2021. Conservative data sharing formulti-task offline reinforcement

learning. Advances in Neural Information Processing Systems 34 (2021), 11501–
11516.

[47] Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and

Chelsea Finn. 2021. Combo: Conservative offlinemodel-based policy optimization.

Advances in neural information processing systems 34 (2021), 28954–28967.
[48] Andrea Zanette, David Brandfonbrener, Emma Brunskill, Matteo Pirotta, and

Alessandro Lazaric. 2020. Frequentist regret bounds for randomized least-squares

value iteration. In International Conference on Artificial Intelligence and Statistics.
PMLR, 1954–1964.

[49] Andrea Zanette, Ching-An Cheng, and Alekh Agarwal. 2021. Cautiously opti-

mistic policy optimization and exploration with linear function approximation.

In Conference on Learning Theory. PMLR, 4473–4525.

https://openreview.net/forum?id=MTTPLcwvqTt
https://openreview.net/forum?id=MTTPLcwvqTt

A APPENDIX
A.1 Pessimistic Value Iteration
The Pessimistic Value Iteration [18] (PEVI) algorithm constructs an estimated Bellman operator B̂ℎ based on the dataset D so that

B̂ℎ𝑉
D
ℎ+1 : S × A → R approximates Bℎ𝑉

D
ℎ+1 : S × A → R. Here 𝑉 D

ℎ+1 : S → R is an estimated value function based on D. Define an

uncertainty quantifier with the confidence parameter 𝜉 ∈ (0, 1) as follows.

Definition A.1 (𝜉-UncertaintyQuantifier). We say {Γℎ}𝐻ℎ=1
(Γℎ : S × A → R) is a 𝜉-uncertainty quantifier if the event

E =

{���(B̂ℎ𝑉 Dℎ+1) (𝑠, 𝑎) − (
Bℎ𝑉

D
ℎ+1

)
(𝑠, 𝑎)

��� ≤ Γℎ (𝑠, 𝑎), ∀(𝑠, 𝑎) ∈ S × A, ℎ ∈ [𝐻]
}

(13)

satisfies P(E) ≥ 1 − 𝜉 .

Algorithm 2 Pessimistic Value Iteration (PEVI): General MDP

1: Input: Dataset D =

{(
𝑠𝜏
ℎ
, 𝑎𝜏
ℎ
, 𝑟𝜏
ℎ

)}𝐾,𝐻
𝜏,ℎ=1

.

2: Initialization: Set 𝑉 D
𝐻+1 (·) ← 0.

3: for step ℎ = 𝐻,𝐻 − 1, · · · , 1 do
4: Construct

(
B̂ℎ𝑉

D
ℎ+1

)
(·, ·) and Γℎ (·, ·) based on D.

5: Set 𝑄D
ℎ
(·, ·) ←

(
B̂ℎ𝑉ℎ+1

)
(·, ·) − Γℎ (·, ·).

6: Set 𝑄D
ℎ
(·, ·) ← min

{
𝑄D
ℎ
(·, ·), 𝐻 − ℎ + 1

}+
.

7: Set 𝜋ℎ (· | 𝑠) ← arg max𝜋ℎ

〈
𝑄D
ℎ
(𝑠, ·), 𝜋ℎ (· | 𝑠)

〉
A
.

8: Set 𝑉 D
ℎ
(·) ←

〈
𝑄D
ℎ
(·, ·), 𝜋ℎ (· | ·)

〉
A
.

9: end for
10: Output: Pess(D) = {𝜋ℎ}𝐻ℎ=1

, {𝑉 D
ℎ
}𝐻
ℎ=1

.

By equation (13), Γℎ quantifies the uncertainty, which allows us to develop the meta-algorithm in Algorithm 2. Now we introduce the

Algorithm 3 PEVI: Kernel Approximation with Data Split

1: Input: Dataset D =

{(
𝑠𝜏
ℎ
, 𝑎𝜏
ℎ
, 𝑟𝜏
ℎ

)}𝐾,𝐻
𝜏,ℎ=1

and parameter 𝐵 and 𝜆.

2: Data split: Randomly split dataset D into 𝐻 disjoint and equally sub-datasets {D̃ℎ}𝐻ℎ=1
.

3: Initialization: Set 𝑉
D̃𝐻+1:𝐻

𝐻+1 (·) ← 0.

4: for step ℎ = 𝐻, · · · , 1 do

5: Compute the Gram matrix 𝐾
D̃ℎ
ℎ

, function 𝑘
D̃ℎ
ℎ

and response vector 𝑦ℎ defined in equation (17) and (18), respectively.

6: Set Γℎ (·, ·) ← 𝐵 · 𝜆−1/2 ·
(
𝑘 (·, ·; ·, ·) − 𝑘 D̃ℎ

ℎ
(·, ·)⊤

(
𝐾
D̃ℎ
ℎ
+ 𝜆𝐼

)−1

𝑘
D̃ℎ
ℎ
(·, ·)

)
1/2

.

7: Set 𝑄
D̃ℎ:𝐻

ℎ
(·, ·) ← 𝑘

D̃ℎ
ℎ
(·, ·)⊤

(
𝐾
D̃ℎ
ℎ
+ 𝜆𝐼

)−1

𝑦ℎ − Γℎ (·, ·).

8: Set 𝑄
D̃ℎ:𝐻

ℎ
(·, ·) ← min

{
𝑄
D̃ℎ:𝐻

ℎ
(·, ·), 𝐻 − ℎ + 1

}+
.

9: Set 𝜋ℎ (· | 𝑠) ← arg max𝜋ℎ

〈
𝑄
D̃ℎ:𝐻

ℎ
(𝑠, ·), 𝜋ℎ (· | 𝑠)

〉
A
.

10: Set 𝑉
D̃ℎ:𝐻

ℎ
(·) ←

〈
𝑄D
ℎ
(·, ·), 𝜋ℎ (· | ·)

〉
A
.

11: end for
12: Output: Pess(D) = {𝜋ℎ}𝐻ℎ=1

, {𝑉 D̃ℎ:𝐻

ℎ
}𝐻
ℎ=1

.

PEVI with the data splitting and the kernel setting. Suppose we have the dataset D = {(𝑠𝜏
ℎ
, 𝑎𝜏
ℎ
, 𝑟𝜏
ℎ
)}𝐻,𝑁
ℎ,𝜏=1

, we partition the dataset D into 𝐻

disjoint and equally sub-datasets {D̃ℎ}𝐻ℎ=1
and |D̃ℎ | := 𝑁ℎ = 𝑁 /𝐻 for all ℎ ∈ [𝐻]. Consider the index set Iℎ = {𝑁ℎ · (ℎ− 1) + 1, · · · , 𝑁ℎ ·ℎ} =

{𝜏ℎ,1, · · · , 𝜏ℎ,𝑁ℎ } such that D̃ℎ = {(𝑠𝜏
ℎ
, 𝑎𝜏
ℎ
, 𝑟𝜏
ℎ
)}𝜏∈Iℎ . To simplify notation, let D̃ℎ:𝐻 =

⋃𝐻
𝑡=ℎ
D̃𝑡 for ℎ ∈ [𝐻]. Note that Dℎ:𝐻 = ∅ if ℎ > 𝐻 .

Then, we construct the pessimistic value iterations [18] with B̂ℎ𝑉
D̃ℎ+1:𝐻

ℎ+1 , Γℎ, and 𝑉
D̃ℎ:𝐻

ℎ
. Note that 𝑉

D̃𝐻+1:𝐻

𝐻+1 = 0. Define the empirical mean

squared Bellman error (MSBE) as

𝑀ℎ (𝑓) =
∑︁
𝜏∈Iℎ

(
𝑟𝜏
ℎ
+𝑉 D̃ℎ+1:𝐻

ℎ+1

(
𝑠𝜏
ℎ+1

)
− 𝑓

(
𝑠𝜏
ℎ
, 𝑎𝜏
ℎ

))2

(14)

at each step ℎ ∈ [𝐻] and for all 𝑓 ∈ H𝑘 . Corresponding, we set(
B̂ℎ𝑉

D̃ℎ+1:𝐻

ℎ+1

)
(𝑧) = 𝑓ℎ (𝑧), where 𝑓ℎ = arg min

𝑓 ∈H𝑘
𝑀ℎ (𝑓) + 𝜆 · ∥ 𝑓 ∥2H𝑘 (15)

for 𝜆 > 0. Moreover, we construct Γℎ via

Γℎ (𝑧) = 𝐵 · 𝜆−1/2 ·
(
𝐾 (𝑧, 𝑧) − 𝑘 D̃ℎ

ℎ
(𝑧)⊤

(
𝐾
D̃ℎ
ℎ
+ 𝜆𝐼

)−1

𝑘
D̃ℎ
ℎ
(𝑧)

)
1/2

(16)

where 𝐵 > 0 is a scaling parameter. Note that it is a bonus function defined in [41] and that it is clearly a 𝜉 quantifier. Here, the kernel matrix

𝐾
D̃ℎ
ℎ
∈ R𝑁ℎ×𝑁ℎ , and the function 𝑘

D̃ℎ
ℎ

: Z → R𝑁ℎ as

[
𝐾
D̃ℎ
ℎ

]
𝜏,𝜏 ′

= 𝑘

(
𝑧𝜏
ℎ
, 𝑧𝜏
′

ℎ

)
, 𝑘

D̃ℎ
ℎ
(𝑧) =

©«
𝑘

(
𝑧
𝜏ℎ,1
ℎ

, 𝑧

)
.
.
.

𝑘

(
𝑧
𝜏ℎ,𝑁ℎ
ℎ

, 𝑧

)
ª®®®®¬
∈ R𝑁ℎ , (17)

for 𝜏, 𝜏 ′ ∈ Iℎ . The entry of 𝑦ℎ ∈ R𝑁ℎ corresponding to 𝜏 ∈ Iℎ is

[𝑦ℎ]𝜏 = 𝑟𝜏
ℎ
+𝑉 D̃ℎ+1:𝐻

ℎ+1

(
𝑠𝜏
ℎ+1

)
(18)

We construct the pessimistic value iteration with kernel approximation with kernel 𝑘 by

𝑄
D̃ℎ+1:𝐻

ℎ
(𝑧) = Bℎ𝑉

D̃ℎ+1:𝐻

ℎ+1 (𝑧) − Γℎ (𝑧),

𝑄
D̃ℎ+1:𝐻

ℎ
(𝑧) = min

{
𝑄
D̃ℎ+1:𝐻

ℎ
(𝑧), 𝐻 − ℎ + 1

}+
,

𝜋ℎ (· | 𝑠) = arg max

𝜋ℎ

〈
𝑄
D̃ℎ+1:𝐻

ℎ
(𝑠, ·), 𝜋ℎ (· | 𝑠)

〉
A

𝑉
D̃ℎ+1:𝐻

ℎ
(𝑠) =

〈
𝑄
D̃ℎ+1:𝐻

ℎ
(𝑠, ·), 𝜋ℎ (· | 𝑠)

〉
A
,

The algorithm 3 summarizes the entire PEVI algorithm with data splitting.

A.2 Proof of Main Result
A.2.1 Proof of Proposition 4.1.

We present a generalization of [1] (Theorem 1). Its proof closely mirrors that of the special case whereH𝑘 has a linear kernel. To simplify

notation, denote the labeled dataset as D1 = {𝑠𝜏
ℎ
, 𝑎𝜏
ℎ
, 𝑟𝜏
ℎ
}𝑁1,𝐻

𝜏,ℎ=1
. Subsequently, we address the following problem:

𝜃𝑡
ℎ
∈ arg min

𝜃 ∈H𝑘

{
𝑡∑︁
𝜏=1

(〈
𝜃, 𝜙

(
𝑠𝜏
ℎ
, 𝑎𝜏
ℎ

)〉
H𝑘
− 𝑟𝜏

ℎ

)
2

+ 𝜈 ∥𝜃 ∥2H

}
. (19)

Here, 𝜙 (𝑠𝜏
ℎ
, 𝑎𝜏
ℎ
) is a column vector for all ℎ ∈ [𝐻] and 𝑡 > 0. The solution for the above equation is that 𝜃𝑡

ℎ
= (Λ𝑡

ℎ
)−1 (Φ𝑡

ℎ
)⊤𝑌 𝑡

ℎ
, where

Λ𝑡
ℎ
= (Φ𝑡

ℎ
)⊤Φ𝑡

ℎ
+ 𝜈𝐼H , Φ𝑡ℎ =

[
𝜙

(
𝑠1

ℎ
, 𝑎1

ℎ

)⊤
, · · · , 𝜙

(
𝑠𝑡
ℎ
, 𝑎𝑡
ℎ

)⊤]⊤
, and 𝑌 𝑡

ℎ
=

[
𝑟1

ℎ
, · · · , 𝑟𝑡

ℎ

]
. Denote 𝐻𝑡

ℎ
=

[
𝜖1

ℎ
, · · · , 𝜖𝑡

ℎ

]
and 𝐾𝑡

ℎ
= Φ𝑡

ℎ
(Φ𝑡
ℎ
)⊤. We then

determine the upper bound with ∥𝜃𝑡
ℎ
− 𝜃∗

ℎ
∥Λ𝑡

ℎ
. We write

𝜃𝑡
ℎ
= ((Φ𝑡

ℎ
)⊤Φ𝑡

ℎ
+ 𝜈𝐼H)−1 (Φ𝑡

ℎ
)⊤ (Φ𝑡

ℎ
𝜃∗
ℎ
+ 𝐻𝑡

ℎ
)

= ((Φ𝑡
ℎ
)⊤Φ𝑡

ℎ
+ 𝜈𝐼H)−1 (((Φ𝑡

ℎ
)⊤Φ𝑡

ℎ
+ 𝜈𝐼H) − 𝜈𝐼H)𝜃∗ℎ + (Φ

𝑡
ℎ
)⊤𝐻𝑡

ℎ
)

= ((Φ𝑡
ℎ
)⊤Φ𝑡

ℎ
+ 𝜈𝐼H)−1 (Φ𝑡

ℎ
)⊤𝐻𝑡

ℎ
+ 𝜃∗ − 𝜈 ((Φ𝑡

ℎ
)⊤Φ𝑡

ℎ
+ 𝜈𝐼H)−1𝜃∗

= (Λ𝑡
ℎ
)−1 (Φ𝑡

ℎ
)⊤𝐻𝑡

ℎ
+ 𝜃∗ − 𝜈 (Λ𝑡

ℎ
)−1𝜃∗

(20)

That implies

𝑥⊤ ˆ𝜃𝑡 − 𝑥⊤ ˆ𝜃∗ = 𝑥⊤ (Λ𝑡
ℎ
)−1 (Φ𝑡

ℎ
)⊤𝐻𝑡

ℎ
− 𝜈𝑥⊤ (Λ𝑡

ℎ
)−1𝜃∗

= ⟨𝑥, (Φ𝑡
ℎ
)⊤𝐻𝑡

ℎ
⟩(Λ𝑡

ℎ
)−1 − 𝜈 ⟨𝑥, 𝜃∗⟩(Λ𝑡

ℎ
)−1

(21)

where ⟨𝑥,𝑦⟩(Λ𝑡
ℎ
)−1 = 𝑥⊤ (Λ𝑡

ℎ
)−1𝑦 and Λ𝑡

ℎ
is positive definite, then (Λ𝑡

ℎ
)−1/2 ≤ 𝜈−1/2

. Using Cauchy-Schwarz inequality, we get

|𝑥⊤𝜃𝑡
ℎ
− 𝑥⊤𝜃∗

ℎ
| ≤ ∥𝑥 ∥ (Λ𝑡

ℎ
)−1 (∥(Φ𝑡ℎ)

⊤𝐻𝑡
ℎ
∥ (Λ𝑡

ℎ
)−1 + 𝜈 ∥𝜃∗ℎ ∥ (Λ𝑡ℎ)−1)

≤ ∥𝑥 ∥ (Λ𝑡
ℎ
)−1 (∥(Φ𝑡ℎ)

⊤𝐻𝑡
ℎ
∥ (Λ𝑡

ℎ
)−1 +

√
𝜈 ∥𝜃∗

ℎ
∥H𝑘)

(22)

where the second inequality uses the fact that𝜃∗
ℎ

(Λ𝑡
ℎ
)−1

=

(Λ𝑡ℎ)−1/2𝜃∗
ℎ

H𝑘
≤ 𝜈 1

√
𝜈

𝜃∗
ℎ

H𝑘 ≤

√
𝜈
𝜃∗
ℎ

H𝑘

Next, we show that with probability at least 1 − 𝛿

∥(Φ𝑡
ℎ
)⊤𝐻𝑡

ℎ
∥2(Λ𝑡

ℎ
)−1
≤ 𝐻2 · log det

[
𝜈𝐼 + 𝐾𝑡

ℎ

]
+ 2𝐻2 · log(1/𝛿) (23)

Following [35], we will use the following identities:(
(Φ𝑡
ℎ
)⊤Φ𝑡

ℎ
+ 𝜈𝐼H

)
(Φ𝑡
ℎ
)⊤ = (Φ𝑡

ℎ
)⊤

(
Φ𝑡
ℎ
(Φ𝑡
ℎ
)⊤ + 𝜈𝐼

)
⇒ Λ𝑡

ℎ
(Φ𝑡
ℎ
)⊤ = (Φ𝑡

ℎ
)⊤

(
𝐾𝑡
ℎ
+ 𝜈𝐼

)
⇒ (Φ𝑡

ℎ
)⊤

(
𝐾𝑡
ℎ
+ 𝜈𝐼

)−1

= (Λ𝑡
ℎ
)−1 (Φ𝑡

ℎ
)⊤ .

With the basic operation, we get

∥(Φ𝑡
ℎ
)⊤𝐻𝑡

ℎ
∥2(Λ𝑡

ℎ
)−1

= (𝐻𝑡
ℎ
)⊤Φ𝑡

ℎ
(Λ𝑡
ℎ
)−1 (Φ𝑡

ℎ
)⊤𝐻𝑡

ℎ

= (𝐻𝑡
ℎ
)⊤Φ𝑡

ℎ
(Φ𝑡
ℎ
)⊤

(
𝐾𝑡
ℎ
+ 𝜈𝐼

)−1

𝐻𝑡
ℎ

= (𝐻𝑡
ℎ
)⊤𝐾𝑡

ℎ

(
𝐾𝑡
ℎ
+ 𝜈𝐼

)−1

𝐻𝑡
ℎ

(24)

Setting 𝜈 = 1 + 𝜂, for some 𝜂 > 0, we have(
𝐾𝑡
ℎ
+ 𝜂 · 𝐼

) [
𝐾𝑡
ℎ
+ (1 + 𝜂) · 𝐼

]−1

=

(
𝐾𝑡
ℎ
+ 𝜂 · 𝐼

) [
𝐼 +

(
𝐾𝑡
ℎ
+ 𝜂 · 𝐼

)]−1

=

[(
𝐾𝑡
ℎ
+ 𝜂 · 𝐼

)−1

+ 𝐼
]−1 (25)

, which implies

(𝐻𝑡
ℎ
)⊤𝐾𝑡

ℎ

(
𝐾𝑡
ℎ
+ 𝜈𝐼

)−1

𝐻𝑡
ℎ
≤ (𝐻𝑡

ℎ
)⊤

(
𝐾𝑡
ℎ
+ 𝜂 · 𝐼

) (
𝐾𝑡
ℎ
+ (1 + 𝜂) 𝐼

)−1

𝐻𝑡
ℎ

= (𝐻𝑡
ℎ
)⊤

[(
𝐾𝑡
ℎ
+ 𝜂 · 𝐼

)−1

+ 𝐼
]−1

𝐻𝑡
ℎ

(26)

Applying Lemma A.6 with 𝐸𝑡 = 𝐻
𝑡
ℎ
and 𝜎2 = 1, we obtain the following result: with a probability of at least 1 − 𝛿 , the given condition holds

simultaneously for all 𝑡 ≥ 1

(𝐻𝑡
ℎ
)⊤

[(
𝐾𝑡
ℎ
+ 𝜂 · 𝐼

)−1

+ 𝐼
]−1

𝐻𝑡
ℎ
≤ log det

[
(1 + 𝜂) · 𝐼 + 𝐾𝑡

ℎ

]
+ 2 log(1/𝛿)

for any 𝜂 > 0 and 𝛿 ∈ (0, 1). Combine equation (24) and (26), for any 𝑡 > 0, we get

∥(Φ𝑡
ℎ
)⊤𝐻𝑡

ℎ
∥ (Λ𝑡

ℎ
)−1 ≤

√√√
log

det

[
(1 + 𝜂) · 𝐼 + 𝐾𝑡

ℎ

]
𝛿2

(27)

with probability at least 1 − 𝛿 . Therefore, combine the equation (22) and (27), one also has

|𝑥⊤𝜃𝑡
ℎ
− 𝑥⊤𝜃∗

ℎ
| ≤ ∥𝑥 ∥ (Λ𝑡

ℎ
)−1 (

√√√
log

det

[
(1 + 𝜂) · 𝐼 + 𝐾𝑡

ℎ

]
𝛿2

+
√
𝜈 ∥𝜃∗

ℎ
∥H𝑘)

(28)

for all 𝑡 ≥ 0. Plugging in 𝑥 = Λ𝑡
ℎ
(𝜃𝑡
ℎ
− 𝜃∗

ℎ
), we get

∥𝜃𝑡
ℎ
− 𝜃∗

ℎ
∥2
Λ𝑡
ℎ

≤ ∥Λ𝑡
ℎ
(𝜃𝑡
ℎ
− 𝜃∗

ℎ
)∥ (Λ𝑡

ℎ
)−1 (

√√√
log

det

[
(1 + 𝜂) · 𝐼 + 𝐾𝑡

ℎ

]
𝛿2

+
√
𝜈 ∥𝜃∗

ℎ
∥H𝑘) (29)

Now,∥𝜃𝑡
ℎ
− 𝜃∗

ℎ
∥Λ𝑡

ℎ
= ∥Λ𝑡

ℎ
(𝜃𝑡
ℎ
− 𝜃∗

ℎ
)∥ (Λ𝑡

ℎ
)−1 dividing both sides by ∥ ˆ𝜃𝑡

ℎ
− 𝜃∗

ℎ
∥Λ𝑡

ℎ
, we get

∥𝜃𝑡
ℎ
− 𝜃∗

ℎ
∥Λ𝑡

ℎ
≤ (

√√√
log

det

[
(1 + 𝜂) · 𝐼 + 𝐾𝑡

ℎ

]
𝛿2

+
√
𝜈 ∥𝜃∗

ℎ
∥H𝑘) (30)

Finally, we fix 𝑡 = 𝑁1 and let 𝜃ℎ = 𝜃𝑡
ℎ
,Λℎ = Λ𝑡

ℎ
and 𝐾

D1

ℎ
= 𝐾𝑡

ℎ
, where D1 is offline dataset, we get

∥𝜃ℎ − 𝜃∗ℎ ∥Λℎ ≤
√
𝜈 ∥𝜃∗

ℎ
∥H𝑘 +

√√√
log

det

[
𝜈𝐼 + 𝐾D1

ℎ

]
𝛿2

(31)

Furthermore, observed that det

(
𝜈𝐼 + 𝐾D1

ℎ

)
= det

(
𝐼 + 𝜈−1𝐾

D1

ℎ

)
det(𝜈𝐼). Thus, we have

log

(
det

(
𝜈𝐼 + 𝐾D1

ℎ

))
= log

(
det

(
𝐼 + 𝜈−1𝐾

D1

ℎ

))
+ 𝑁1 log𝜈 ≤ 2𝐺 (𝑁1, 𝜈) + 𝑁1 (𝜈 − 1) (32)

where 𝜈 > 1.Thus, set 𝜈 = 1 + 1/𝑁1, we have

∥𝜃ℎ − 𝜃∗ℎ ∥Λℎ ≤
√
𝜈 ∥𝜃∗

ℎ
∥H𝑘 +

√︂
2𝐺 (𝑁1, 1 + 1/𝑁1) + 1 + log

1

𝛿2
(33)

A.2.2 Proof of Theorem 4.3.
The proof of Theorem 4.3 and the related supporting lemmas are given in this part. Recall that we denote the labeled dataset D1,

unlabeled dataset D𝜃
2
, and D𝜃 = {(𝑠𝜏

ℎ
, 𝑎𝜏
ℎ
, �̂�
𝜃ℎ
ℎ
(𝑠𝜏
ℎ
, 𝑎𝜏
ℎ
))}𝑁,𝐻

𝜏,ℎ=1
, which is a combination of labeled dataset D1 and unlabeled dataset D𝜃

2

and 𝑁 = 𝑁1 + 𝑁2. We partition dataset D𝜃 into 𝐻 disjoint and equally sized sub dataset {D̃𝜃
ℎ
}𝐻
ℎ=1

, where |D̃𝜃
ℎ
| = 𝑁ℎ = 𝑁 /𝐻 . Let

Iℎ = {𝑁ℎ · (ℎ − 1) + 1, . . . , 𝑁ℎ · ℎ} =
{
𝜏ℎ,1, · · · , 𝜏ℎ,𝑁ℎ

}
satisfy D̃𝜃

ℎ
= {(𝑠𝜏

ℎ
, 𝑎𝜏
ℎ
, �̂�
𝜃ℎ
ℎ
(𝑠𝜏
ℎ
, 𝑎𝜏
ℎ
))}𝜏∈Iℎ . Denote {𝑉

D̃𝜃
ℎ:𝐻

ℎ
}𝐻
ℎ=1

as the estimated value

function constructed by PEVI. These estimations are based on datasets D̃ℎ:𝐻 , where rewards have been relabeled using the parameter

𝜃 := {𝜃ℎ}𝐻ℎ=1
. Furthermore, let 𝑉

𝜋,𝜃
1

be the value function associated with policy 𝜋 and the estimated reward function with parameter 𝜃 .

From equation (4) in Algorithm 1, for all ℎ ∈ [𝐻], we have

𝑉
D̃𝜃
ℎ:𝐻

ℎ
(𝑠0) ≤ 𝑉

D̃𝜃
ℎ:𝐻

ℎ
(𝑠0), ∀𝜃ℎ ∈ Cℎ (𝛿) (34)

where 𝑠0 is an unique initial state and 𝜃 := {𝜃ℎ}𝐻ℎ=1
is the pessimistic estimation of 𝜃 .

Let E1 be the event 𝜃∗
ℎ
∈ Cℎ (𝛿), then we have P(E1) ≥ 1 − 𝛿 from Proposition 4.1

Denote {𝑉 D̃
𝜃
ℎ:𝐻

ℎ
} = Pess(D) from algorithm 3. Let E2 be the event where the following inequality holds for each dataset D̃𝜃

ℎ
and����(B̂ℎ𝑉 D̃𝜃ℎ+1:𝐻

ℎ+1

)
(𝑠, 𝑎) −

(
Bℎ𝑉

D̃𝜃
ℎ+1:𝐻

ℎ+1

)
(𝑠, 𝑎)

���� ≤ Γℎ (𝑠, 𝑎) ,∀(𝑠, 𝑎) ∈ S × A, ℎ ∈ [𝐻], (35)

where Γℎ (𝑠, 𝑎) = 𝐵∥𝜙 (𝑠, 𝑎)∥
(Λ
D̃𝜃
ℎ

ℎ
)−1

, and

𝐵 =

𝐶2 · 𝐻 ·

√︁
𝑑 log (𝑁 /𝛿) 𝑑-finite spectrum,

𝐶2 · 𝐻 ·
√︃
(log𝑁 /𝛿)1+1/𝑑 𝑑-exponential decay

𝐶2 · 𝑁
𝑑+1

2(𝑑+𝑚) 𝐻
1− 𝑑+1

2(𝑑+𝑚) ·
√︁

log(𝑁 /𝛿) 𝑑-polynomial decay

(36)

where 𝐶1 > 0 does not depend on 𝑁1 nor 𝐻 and 𝐶2 > 0 does not depend on 𝑁 nor 𝐻 . Then, apply Lemma A.4 such that P(E2) ≥ 1 − 𝛿 .
Condition on E1 ∩ E2, we have

𝑉
𝜋∗,𝜃 ∗

1
(𝑠0) −𝑉 𝜋,𝜃

∗

1
(𝑠0) = 𝑉 𝜋

∗,𝜃 ∗

1
(𝑠0) −𝑉

D̃𝜃∗
1:𝐻

1
(𝑠0) +𝑉

D̃𝜃∗
1:𝐻

1
(𝑠0) −𝑉 𝜋,𝜃

∗

1
(𝑠0)

≤ 𝑉 𝜋
∗,𝜃 ∗

1
(𝑠0) −𝑉

D̃𝜃∗
1:𝐻

1
(𝑠0)

= 𝑉
𝜋∗,𝜃 ∗

1
(𝑠0) −𝑉 𝜋

∗,𝜃
1
(𝑠0) +𝑉 𝜋

∗,𝜃
1
(𝑠0) −𝑉

D̃𝜃
1:𝐻

1
(𝑠0) +𝑉

D̃𝜃
1:𝐻

1
(𝑠0) −𝑉

D̃𝜃∗
1:𝐻

1
(𝑠0)

≤ 𝑉 𝜋
∗,𝜃 ∗

1
(𝑠0) −𝑉 𝜋

∗,𝜃
1
(𝑠0) +𝑉 𝜋

∗,𝜃
1
(𝑠0) −𝑉

D̃𝜃
1:𝐻

1
(𝑠0)

= 𝑉
𝜋∗,𝜃 ∗

1
(𝑠0) −𝑉 𝜋

∗,𝜃
1
(𝑠0) +𝑉 𝜋

∗,𝜃
1
(𝑠0) −𝑉 𝜋

∗,𝜃
1
(𝑠0) +𝑉 𝜋

∗,𝜃
1
(𝑠0) −𝑉

D̃𝜃
1:𝐻

1
(𝑠0)

≤
����𝑉 𝜋∗,𝜃 ∗1

(𝑠0) −𝑉 𝜋
∗,𝜃

1
(𝑠0)

���� + ����𝑉 𝜋∗,𝜃1
(𝑠0) −𝑉 𝜋

∗,𝜃
1
(𝑠0)

���� +𝑉 𝜋∗,𝜃1
(𝑠0) −𝑉

D̃𝜃
1:𝐻

1
(𝑠0)

≤ 2

𝐻∑︁
ℎ=1

𝛽ℎ (𝛿)E𝜋∗
[
∥𝜙 (𝑠ℎ, 𝑎ℎ)∥ (ΛD1

ℎ
)−1
| 𝑠1 = 𝑠0

]
+ 2𝐵

𝐻∑︁
ℎ=1

E𝜋∗
∥𝜙 (𝑠ℎ, 𝑎ℎ)∥ (ΛD̃𝜃ℎℎ)−1

| 𝑠1 = 𝑠0

(37)

for 𝑠0 is the unique initial state and 𝛽ℎ (𝛿) is

𝛽ℎ (𝛿) =

√︃

1 + 1

𝑁1

S +
√︃
𝐶1 · 𝑑 · log𝑁1 + log(1

𝛿2
) 𝑑-finite spectrum,√︃

1 + 1

𝑁1

S +
√︃
𝐶1 · (log𝑁1)1+

1

𝑑 + log(1

𝛿2
) 𝑑-exponential decay√︃

1 + 1

𝑁1

S +
√︃
𝐶1 · (𝑁1)

𝑑+1
𝑑+𝑚 · log(𝑁1) + log(1

𝛿2
) 𝑑-polynomial decay

Note that the first inequality follows Lemma A.2, while the second inequality follows directly from equation (34), and the last inequality

follows Lemma A.3 and Theorem A.5.

Lemma A.2. Under the event E2, we have

𝑉
D̃𝜃∗

1:𝐻

1
(𝑠0) −𝑉 𝜋,𝜃

∗

1
(𝑠0) ≤ 0

where 𝑠0 is the unique initial state.

Proof. For simplicity, we denote 𝑉 D
1
(𝑠0) = 𝑉

D̃𝜃∗
1:𝐻

1
(𝑠0) and 𝑉 𝜋

1
(𝑠0) = 𝑉

𝜋,𝜃 ∗

1
(𝑠0). By Lemma A.8 with 𝜋 = 𝜋 ′ = 𝜋 and {𝑄D

ℎ
}𝐻
ℎ=1

is

constructed by PEVI (Algorithm 3), we have

𝑉 D
1
(𝑠0) −𝑉 𝜋1 (𝑠0) =

𝐻∑︁
ℎ=1

E𝜋
[
𝑄D
ℎ
(𝑠ℎ, 𝑎ℎ) −

(
Bℎ𝑉

D
ℎ+1

)
(𝑠ℎ, 𝑎ℎ) | 𝑠1 = 𝑠0

]
.

Recall that 𝑄D
ℎ
(𝑠, 𝑎) is defined in line 6 in Algorithm 3. For all ℎ ∈ [𝐻] and all (𝑠, 𝑎) ∈ S × A, if 𝑄D

ℎ
(𝑠, 𝑎) < 0, implies 𝑄D

ℎ
(𝑠, 𝑎) = 0. Then

𝑄D
ℎ
(𝑠, 𝑎) −

(
Bℎ𝑉

D
ℎ+1

)
(𝑠, 𝑎) = −

(
Bℎ𝑉

D
ℎ+1

)
(𝑠, 𝑎) < 0

as 𝑟ℎ ∈ [0, 1]. Otherwise, 𝑄Dℎ (𝑠, 𝑎) ≥ 0, we have

𝑄D
ℎ
(𝑠, 𝑎) −

(
Bℎ𝑉

D
ℎ+1

)
(𝑠, 𝑎) ≤ 𝑄D

ℎ
(𝑠, 𝑎) −

(
Bℎ𝑉

D
ℎ+1

)
(𝑠, 𝑎)

=

(
B̂ℎ𝑉

D
ℎ+1

)
(𝑠, 𝑎) −

(
Bℎ𝑉

D
ℎ+1

)
(𝑠 .𝑎) − Γℎ (𝑠, 𝑎) ≤ 0.

Finally, we have

𝑉 D
1
(𝑠0) −𝑉 𝜋1 (𝑠0) ≤ 0 (38)

□

Lemma A.3. For policy 𝜋∗, and offline dataset D = {(𝑠𝜏
ℎ
, 𝑎𝜏
ℎ
, 𝑟𝜏
ℎ
)}𝑁,𝐻
𝜏,ℎ=1

, and any reward function parameter 𝜃ℎ ∈ 𝐶ℎ (𝛿), we have

|𝑉 𝜋
∗,𝜃

1
(𝑠0) −𝑉 𝜋

∗,𝜃
1
(𝑠0) | ≤

𝐻∑︁
ℎ=1

𝛽ℎ (𝛿)E𝜋∗
[
∥𝜙 (𝑠ℎ, 𝑎ℎ)∥ (ΛD

ℎ
)−1 | 𝑠1 = 𝑠0

]
(39)

where 𝑠0 is the unique initial state and 𝛽ℎ (𝛿) is defined in equation (7). Moreover, suppose Assumption 3.1 holds, then 𝛽ℎ (𝛿) can be written as

𝛽ℎ (𝛿) =

√︃

1 + 1

𝑁
S +

√︃
𝐶1 · 𝑑 · log𝑁 + 1 + log(1

𝛿2
) 𝑑-finite spectrum,√︃

1 + 1

𝑁
S +

√︃
𝐶1 · (log𝑁)1+

1

𝑑 + 1 + log(1

𝛿2
) 𝑑-exponential decay√︃

1 + 1

𝑁
S +

√︃
𝐶1 · (𝑁)

𝑚+1
𝑑+𝑚 · log(𝑁) + 1 + log(1

𝛿2
) 𝑑-polynomial decay

(40)

Proof. From the definition, we have

|̂𝑟𝜃ℎ
ℎ
(𝑠, 𝑎) − �̂�𝜃ℎ

ℎ
(𝑠, 𝑎) | =

���𝜙 (𝑠, 𝑎)⊤𝜃ℎ − 𝜙 (𝑠, 𝑎)⊤𝜃ℎ ���
≤ ∥𝜃 − 𝜃ℎ ∥ΛD

ℎ

· ∥𝜙 (𝑠, 𝑎)∥ (ΛD
ℎ
)−1

≤ 𝛽ℎ (𝛿)
√︃
𝜙 (𝑠, 𝑎)⊤ (ΛD

ℎ
)−1𝜙 (𝑠, 𝑎)

(41)

Then, we have

𝑉
𝜋∗,𝜃
1
(𝑠0) −𝑉 𝜋

∗,𝜃
1
(𝑠0) =

𝐻∑︁
ℎ=1

E𝜋∗
[̂
𝑟
𝜃ℎ
ℎ
(𝑠, 𝑎) − �̂�𝜃ℎ

ℎ
(𝑠, 𝑎) | 𝑠1 = 𝑠0

]
≤

𝐻∑︁
ℎ=1

E𝜋∗
[����̂𝑟𝜃ℎℎ (𝑠, 𝑎) − �̂�𝜃ℎℎ (𝑠, 𝑎)���� | 𝑠1 = 𝑠0

]
≤

𝐻∑︁
ℎ=1

𝛽ℎ (𝛿)E𝜋∗
[√︃
𝜙 (𝑠ℎ, 𝑎ℎ)⊤ (ΛDℎ)

−1𝜙 (𝑠ℎ, 𝑎ℎ) | 𝑠1 = 𝑠0

]
=

𝐻∑︁
ℎ=1

𝛽ℎ (𝛿)E𝜋∗
[
∥𝜙 (𝑠ℎ, 𝑎ℎ)∥ (ΛD

ℎ
)−1 | 𝑠1 = 𝑠0

]
.

(42)

Recall that 𝛽ℎ (𝛿) =
√
𝜈S +

√︃
2𝐺 (𝑁,𝜈) + 1 + log

1

𝛿2
defined in equation (7). Setting 𝜈 = 1 + 1/𝑁 and applying Lemma A.7, we obtain

𝛽ℎ (𝛿) =

√︃

1 + 1

𝑁
S +

√︃
𝐶1 · 𝑑 · log𝑁 + log(1

𝛿2
) 𝑑-finite spectrum,√︃

1 + 1

𝑁
S +

√︃
𝐶1 · (log𝑁)1+

1

𝑑 + log(1

𝛿2
) 𝑑-exponential decay√︃

1 + 1

𝑁
S +

√︃
𝐶1 · (𝑁)

𝑚+1
𝑑+𝑚 · log(𝑁) + log(1

𝛿2
) 𝑑-polynomial decay

(43)

for some sufficient large 𝐶1 and 𝐶1 is an absolute constant that does not depend on 𝑁1 nor 𝐻 . □

Lemma A.4. Suppose Assumption 3.2 and 3.1 hold, with dataset D = {(𝑠𝜏
ℎ
, 𝑎𝜏
ℎ
, 𝑟𝜏
ℎ
)}𝐻,𝑁
ℎ,𝜏=1

, we set 𝜆 = 1 + 1/𝑁 and 𝐵 > 0 satisfies

2(1 + 1

𝑁
)𝑅2

𝑄 + 8𝐺 (𝑁 /𝐻, 1 + 1/𝑁) + 2/𝐻 + 8 log(𝐻/𝜉) ≤ (𝐵/𝐻)2 (44)

in Algorithm 3. Then Γℎ (𝑠, 𝑎) = 𝐵 · ∥𝜙 (𝑠, 𝑎)∥ (ΛD̃ℎ
ℎ
)−1

is a 𝜉-quantifier where D̃ℎ is defined in Theorem 4.3. That is, for dataset D, the following

inequality holds, ����(B̂ℎ𝑉 D̃ℎ+1:𝐻

ℎ+1

)
(𝑠, 𝑎) −

(
Bℎ𝑉

D̃ℎ+1:𝐻

ℎ+1

)
(𝑠, 𝑎)

���� ≤ Γℎ (𝑠, 𝑎) ,∀(𝑠, 𝑎) ∈ S × A, ℎ ∈ [𝐻] (45)

with P(E2) ≥ 1 − 𝜉 , where E2 is defined in equation(35). In particular, 𝐵 is given by

𝐵 =

𝐶 · 𝐻 ·

√︁
𝑑 log (𝑁 /𝜉) 𝑑-finite spectrum,

𝐶 · 𝐻 ·
√︃
(log𝑁 /𝜉)1+1/𝑑 𝑑-exponential decay

𝐶 · 𝑁
𝑚+1

2(𝑑+𝑚) 𝐻
1− 𝑚+1

2(𝑑+𝑚) ·
√︁

log(𝑁 /𝜉) 𝑑-polynomial decay

(46)

for some absolute constant 𝐶 that does not depend on 𝑁 nor 𝐻 .

Proof. We present the offline reinforcement setting of [41] and combine the data split skill from [39] [24]. Recall that we partition datasetD
into 𝐻 disjoint and equally sized sub dataset {D̃ℎ}𝐻ℎ=1

, where |D̃ℎ | = 𝑁ℎ = 𝑁 /𝐻 . Let Iℎ = {𝑁ℎ · (ℎ − 1) + 1, . . . , 𝑁ℎ · ℎ} =
{
𝜏ℎ,1, · · · , 𝜏ℎ,𝑁ℎ

}

satisfy D̃ℎ = {(𝑠𝜏
ℎ
, 𝑎𝜏
ℎ
, 𝑟𝜏
ℎ
)}𝜏∈Iℎ . Denote the operator Φ

D̃ℎ
ℎ

: H𝑘 → R𝑁ℎ and ΛD̃ℎ
ℎ

: H𝑘 →H𝑘 as

ΦD̃ℎ
ℎ

=

©«
𝜙

(
𝑧
𝜏ℎ,1
ℎ

)⊤
.
.
.

𝜙

(
𝑧
𝜏ℎ,𝑁ℎ
ℎ

)⊤
ª®®®®®¬
=

©«
𝑘

(
·, 𝑧𝜏ℎ,1
ℎ

)⊤
.
.
.

𝑘

(
·, 𝑧𝜏ℎ,𝑁ℎ
ℎ

)⊤
ª®®®®®¬
, ΛD̃ℎ

ℎ
= 𝜆 · 𝐼H + (Φ

D̃ℎ
ℎ
)⊤ΦD̃ℎ

ℎ
(47)

For notation simplicity, let 𝐾ℎ = 𝐾
D̃ℎ
ℎ

, 𝑘ℎ (𝑧) = 𝑘
D̃ℎ
ℎ
(𝑧), and Λℎ = ΛD̃ℎ

ℎ
. For ℎ ∈ [𝐻], the solution 𝑓ℎ of the kernel ridge regression in equation

(15) is that

𝑓ℎ (·) =
∑︁
𝜏∈Iℎ

[𝛼ℎ]𝜏 𝑘 (𝑧𝜏ℎ, ·) = Φ⊤
ℎ
𝛼ℎ (48)

where 𝛼ℎ = (𝐾ℎ + 𝜆 · 𝐼)−1𝑦ℎ . Note that both matrix ΦℎΦ
⊤
ℎ
+ 𝜆 · 𝐼 and Φ⊤

ℎ
Φℎ + 𝜆 · 𝐼H are positive definite, following [35], we have

Φ⊤
ℎ

(
ΦℎΦ

⊤
ℎ
+ 𝜆 · 𝐼

)−1

=

(
Φ⊤
ℎ
Φℎ + 𝜆 · 𝐼H

)−1

Φ⊤
ℎ

(49)

Then, the fitted value function B̂ℎ𝑉
D̃ℎ+1:𝐻

ℎ+1 is that

𝑓ℎ (𝑧) = ⟨𝑓ℎ, 𝑘 (·, 𝑧)⟩H𝑘 = 𝑘ℎ (𝑧)⊤𝛼ℎ (50)

Furthermore, in combination with the equation (49), 𝑘ℎ (𝑧) can be written as 𝑘ℎ (𝑧) = Φℎ𝜙 (𝑧), we have

𝜙 (𝑧) = Λ−1

ℎ
Λℎ𝜙 (𝑧)

= Λ−1

ℎ

[
Φ⊤
ℎ
Φℎ + 𝜆 · 𝐼H𝑘

]
𝜙 (𝑧)

= Λ−1

ℎ
Φ⊤
ℎ
Φℎ𝜙 (𝑧) + 𝜆Λ−1

ℎ
𝜙 (𝑧)

= Φ⊤
ℎ
(𝐾ℎ + 𝜆 · 𝐼)−1Φℎ𝜙 (𝑧) + 𝜆Λ−1

ℎ
𝜙 (𝑧)

= Φ⊤
ℎ
(𝐾ℎ + 𝜆 · 𝐼)−1𝑘ℎ (𝑧) + 𝜆Λ−1

ℎ
𝜙 (𝑧)

(51)

where the forth equality follows equation (49). Recall that 𝑄
D̃ℎ:𝐻

ℎ
(𝑧) = min{𝑄 D̃ℎ:𝐻

ℎ
(𝑧), 𝐻 − ℎ + 1}+ = min{𝑘ℎ (𝑧)⊤𝛼ℎ − Γℎ (𝑧), 𝐻 − ℎ + 1}+ in

Algorithm 3. Since 𝑄
D̃ℎ+1:𝐻

ℎ+1 ∈ [0, 𝐻] for all ℎ ∈ [𝐻], by Assumption 3.2, we have Bℎ𝑉
D̃ℎ+1:𝐻

ℎ+1 ∈ Q∗, i.e.,
����Bℎ𝑉 D̃ℎ+1:𝐻

ℎ+1

����
H
≤ 𝑅𝑄𝐻 . There exists

𝑓ℎ ∈ Q∗ such that 𝑓ℎ = Bℎ𝑉
D̃ℎ+1:𝐻

ℎ+1 and Bℎ𝑉
D̃ℎ+1:𝐻

ℎ+1 (𝑧) = ⟨𝑓ℎ, 𝑘 (·, 𝑧)⟩H𝑘 = 𝜙 (𝑧)⊤ 𝑓ℎ by the feature representation of RKHS. For any ℎ ∈ [𝐻],����(B̂ℎ𝑉 D̃ℎ+1:𝐻

ℎ+1

)
(𝑠, 𝑎) −

(
Bℎ𝑉

D̃ℎ+1:𝐻

ℎ+1

)
(𝑠, 𝑎)

����
=

���𝑓ℎ (𝑠, 𝑎) − 𝜙 (𝑠, 𝑎)⊤ 𝑓ℎ ���
=

��𝑘ℎ (𝑧)⊤ (𝐾ℎ + 𝜆 · 𝐼)−1𝑦ℎ − 𝑘⊤ℎ (𝑧) (𝐾ℎ + 𝜆 · 𝐼)
−1Φℎ 𝑓ℎ − 𝜆𝜙 (𝑧)⊤Λ−1

ℎ
𝑓ℎ

��
≤ |𝑘ℎ (𝑧)⊤ (𝐾ℎ + 𝜆 · 𝐼)−1 (𝑦ℎ − Φℎ 𝑓ℎ) | + |𝜆𝜙 (𝑧)⊤Λ−1

ℎ
𝑓ℎ |

≤ (𝐴) + (𝐵)

(52)

where the second equality follows equation (51). Next, we bound (𝐴) and (𝐵) separately. By Cauchy-Schwarz inequality,

(𝐵) =
��𝜆𝜙 (𝑧)⊤Λ−1

ℎ
𝑓ℎ

�� = 𝜆⟨Λ−1

ℎ
𝜙 (𝑧), 𝑓ℎ⟩H𝑘

≤ 𝜆 ·
Λ−1

ℎ
𝜙 (𝑧)

H𝑘 · ∥ 𝑓ℎ ∥H𝑘

= 𝜆 ·
Λ−1/2
ℎ

Λ
−1/2
ℎ

𝜙 (𝑧)

H𝑘
· ∥ 𝑓ℎ ∥H𝑘

≤ 𝑅𝑄𝐻 · 𝜆1/2 ·
Λ−1/2
ℎ

𝜙 (𝑧)

H𝑘

= 𝑅𝑄𝐻 · 𝜆1/2 · ∥𝜙 (𝑧)∥Λ−1

ℎ

(53)

Furthermore, 𝑦ℎ is defined in equation (18) and Section 3.1, the 𝜏-th entry of (𝑦ℎ − Φℎ 𝑓ℎ) can be written as

[𝑦ℎ]𝜏 − [Φℎ 𝑓ℎ]𝜏 = 𝑟𝜏
ℎ
+𝑉 D̃ℎ+1:𝐻

ℎ+1

(
𝑠𝜏
ℎ+1

)
− 𝜙 (𝑠𝜏

ℎ
, 𝑎𝜏
ℎ
) 𝑓ℎ

= 𝑟𝜏
ℎ
+𝑉 D̃ℎ+1:𝐻

ℎ+1

(
𝑠𝜏
ℎ+1

)
− Bℎ𝑉

D̃ℎ+1:𝐻

ℎ+1

(
𝑠𝜏
ℎ
, 𝑎𝜏
ℎ

)
= 𝑉
D̃ℎ+1:𝐻

ℎ+1

(
𝑠𝜏
ℎ+1

)
− Pℎ𝑉

D̃ℎ+1:𝐻

ℎ+1

(
𝑠𝜏
ℎ
, 𝑎𝜏
ℎ

)
+ 𝜖𝜏

ℎ

(54)

With equation (49) and 𝑘ℎ (𝑧) = Φℎ𝜙 (𝑧), (𝐴) can be written as

(𝐴) =
��𝑘ℎ (𝑧)⊤ (𝐾ℎ + 𝜆 · 𝐼)−1 (𝑦ℎ − Φℎ 𝑓ℎ)

��
=

��𝜙 (𝑠, 𝑎)⊤Φ⊤
ℎ
(𝐾ℎ + 𝜆 · 𝐼)−1 (𝑦ℎ − Φℎ 𝑓ℎ)

��
=

��𝜙 (𝑠, 𝑎)⊤Λ−1

ℎ
Φ⊤
ℎ
(𝑦ℎ − Φℎ 𝑓ℎ)

��
=

������𝜙 (𝑠, 𝑎)⊤Λ−1

ℎ

∑︁
𝜏∈Iℎ

𝜙

(
𝑠𝜏
ℎ
, 𝑎𝜏
ℎ

) [
𝑉
D̃ℎ+1:𝐻

ℎ+1

(
𝑠𝜏
ℎ+1

)
− Pℎ𝑉

D̃ℎ+1:𝐻

ℎ+1

(
𝑠𝜏
ℎ
, 𝑎𝜏
ℎ

)
+ 𝜖𝜏

ℎ

] ������
≤ ∥𝜙 (𝑠, 𝑎)∥Λ−1

ℎ
·

 ∑︁
𝜏∈Iℎ

𝜙

(
𝑠𝜏
ℎ
, 𝑎𝜏
ℎ

) [
𝑉
D̃ℎ+1:𝐻

ℎ+1

(
𝑠𝜏
ℎ+1

)
− Pℎ𝑉

D̃ℎ+1:𝐻

ℎ+1

(
𝑠𝜏
ℎ
, 𝑎𝜏
ℎ

)
+ 𝜖𝜏

ℎ

]
Λ−1

ℎ

,

(55)

where the last inequality uses Cauchy-Schwarz inequality.

For ℎ ∈ [𝐻 − 1], we define the filtration
Fℎ = 𝜎

(
D̃1 ∪ · · · ∪ D̃ℎ

)
,

where 𝜎 (·) is the 𝜎-algebra generated by the set of random variables. Let

𝜀𝜏
ℎ
= (𝑉 D̃ℎ+1:𝐻

ℎ+1

(
𝑠𝜏
ℎ+1

)
+ 𝜖𝜏

ℎ
) − Pℎ𝑉

D̃ℎ+1:𝐻

ℎ+1

(
𝑠𝜏
ℎ
, 𝑎𝜏
ℎ

)
is adapted to the filtration {Fℎ+1}𝐻−1

ℎ=1
. Then

E
[
𝑉
D̃ℎ+1:𝐻

ℎ+1

(
𝑠𝜏
ℎ+1

)
+ 𝜖𝜏

ℎ
| Fℎ

]
= E

[
𝑉
D̃ℎ+1:𝐻

ℎ+1 (𝑠ℎ+1) + 𝜖𝜏ℎ | 𝑠ℎ = 𝑠𝜏
ℎ
, 𝑎ℎ = 𝑎𝜏

ℎ

]
= Pℎ𝑉

D̃ℎ+1:𝐻

ℎ+1

(
𝑠𝜏
ℎ
, 𝑎𝜏
ℎ

)
Thus, we have E

[
𝜀𝜏
ℎ
| Fℎ

]
= 0. Applying Lemma A.6 to 𝜖𝜏 = 𝜀𝜏

ℎ
and 𝜎2 = 2𝐻2

as

𝑉
D̃ℎ+1:𝐻

ℎ+1

(
𝑠𝜏
ℎ+1

)
− Pℎ𝑉

D̃ℎ+1:𝐻

ℎ+1

(
𝑠𝜏
ℎ
, 𝑎𝜏
ℎ

)
∈ [−𝐻,𝐻] (56)

and 𝜖𝜏
ℎ
is 1-sub Gaussian noise, for any 𝜂 > 0 and 𝜉 > 0, it holds probability at least 1 − 𝜉/𝐻 that

𝐸⊤
ℎ

[
(𝐾ℎ + 𝜂 · 𝐼)−1 + 𝐼

]−1

𝐸ℎ

≤ 2𝐻2 · log det [(1 + 𝜂) · 𝐼 + 𝐾ℎ] + 4𝐻2 · log(𝐻/𝜉)
(57)

where 𝐸ℎ =

©«
𝜀
𝜏ℎ,1
ℎ
.
.
.

𝜀
𝜏ℎ,𝑁ℎ
ℎ

ª®®®¬. Using the equation (57), we get

 ∑︁
𝜏∈Iℎ

𝜙

(
𝑠𝜏
ℎ
, 𝑎𝜏
ℎ

)
𝜀𝜏
ℎ

2

Λ−1

ℎ

= 𝐸⊤
ℎ
Φℎ

(
Φ⊤
ℎ
Φℎ + 𝜆 · 𝐼H

)−1

Φ⊤
ℎ
𝐸ℎ

= 𝐸⊤
ℎ
ΦℎΦ

⊤
ℎ

(
ΦℎΦ

⊤
ℎ
+ 𝜆 · 𝐼

)−1

𝐸ℎ

= 𝐸⊤
ℎ
𝐾ℎ (𝐾ℎ + 𝜆 · 𝐼)−1 𝐸ℎ

(58)

For 𝜆 = 𝜂 + 1 > 1 and 𝜂 > 0, we have

𝐸⊤
ℎ
𝐾ℎ (𝐾ℎ + 𝜆 · 𝐼)−1 𝐸ℎ = 𝐸⊤

ℎ
𝐾ℎ (𝐾ℎ + (𝜂 + 1) · 𝐼)−1 𝐸ℎ

≤ 𝐸⊤
ℎ
(𝐾ℎ + 𝜂 · 𝐼) (𝐾ℎ + (𝜂 + 1) · 𝐼)−1 𝐸ℎ

= 𝐸⊤
ℎ

[
(𝐾ℎ + 𝜂 · 𝐼)−1 + 𝐼

]−1

𝐸ℎ

(59)

where the first equality follows the fact

(
(𝐾ℎ + 𝜂 · 𝐼)−1 + 𝐼

)−1

= (𝐾ℎ + 𝜂 · 𝐼) (𝐾ℎ + (1 + 𝜂) · 𝐼)−1
. For any fixed 𝜉 > 0, combining equation

(57), (58), and (59), we get ∑︁
𝜏∈Iℎ

𝜙

(
𝑠𝜏
ℎ
, 𝑎𝜏
ℎ

)
𝜀𝜏
ℎ

2

Λ−1

ℎ

≤ 2𝐻2 · log det [𝜆 · 𝐼 + 𝐾ℎ] + 4𝐻2 · log(𝐻/𝜉) (60)

holds simultaneously for all ℎ ∈ [𝐻] with probability at least 1 − 𝜉 . Clearly, 𝜆 · 𝐼 + 𝐾ℎ = (𝜆 · 𝐼) (𝐼 + 𝐾ℎ/𝜆), then
log det (𝜆 · 𝐼 + 𝐾ℎ) = 𝑁ℎ log 𝜆 + log det (𝐼 + 𝐾ℎ/𝜆)

≤ 𝑁ℎ (𝜆 − 1) + log det (𝐼 + 𝐾ℎ/𝜆) ,
(61)

where 𝑁ℎ = |Iℎ | = 𝑁 /𝐻 . Hence, for any 𝜀 > 0 and 𝜆 > 1, ∑︁
𝜏∈Iℎ

𝜙

(
𝑠𝜏
ℎ
, 𝑎𝜏
ℎ

)
𝜀𝜏
ℎ

2

Λ−1

ℎ

≤ 2𝐻2 · log det [𝐼 + 𝐾ℎ/𝜆] + 𝐻2𝑁ℎ (𝜆 − 1) + 4𝐻2 · log(𝐻/𝜉) (62)

holds simultaneously for all ℎ ∈ [𝐻] with probability at least 1 − 𝜉 . Finally, combine equation (52), (53), (55), and (60) and take 𝜆 = 1 + 1

𝑁
, we

get ����(B̂ℎ𝑉 D̃ℎ+1:𝐻

ℎ+1

)
(𝑧) −

(
Bℎ𝑉

D̃ℎ+1:𝐻

ℎ+1

)
(𝑧)

����
≤ ∥𝜙 (𝑧)∥Λ−1

ℎ

𝑅𝑄𝐻 ·
√
𝜆 +

 ∑︁
𝜏∈Iℎ

𝜙

(
𝑠𝜏
ℎ
, 𝑎𝜏
ℎ

)
𝜀𝜏
ℎ

Λ−1

ℎ

≤ ∥𝜙 (𝑧)∥Λ−1

ℎ

2𝜆𝑅
2

𝑄𝐻
2 + 2

 ∑︁
𝜏∈Iℎ

𝜙

(
𝑠𝜏
ℎ
, 𝑎𝜏
ℎ

)
𝜀𝜏
ℎ

2

Λ−1

ℎ

1/2

≤ ∥𝜙 (𝑧)∥Λ−1

ℎ

[
2𝜆𝑅2

𝑄𝐻
2 + 8𝐻2 ·𝐺 (𝑁 /𝐻, 𝜆) + 2𝐻2𝑁ℎ (𝜆 − 1) + 8𝐻2 · log(𝐻/𝜉)

]
1/2

≤ ∥𝜙 (𝑧)∥Λ−1

ℎ

[
2(1 + 1

𝑁
)𝑅2

𝑄𝐻
2 + 8𝐻2 ·𝐺 (𝑁 /𝐻, 1 + 1/𝑁) + 2𝐻 + 8𝐻2 · log(𝐻/𝜉)

]
1/2

≤ 𝐵 · ∥𝜙 (𝑧)∥Λ−1

ℎ
= Γℎ (𝑧), ∀𝑧 ∈ S × A,

(63)

where the second inequality follows from

√
𝑥 +√𝑦 ≤

√︁
2(𝑥2 + 𝑦2). Thus, {Γℎ}ℎ∈[𝐻] is a 𝜉-uncertainty quantifier. To give explicit expressions

for 𝐵, we distinguish three cases according to the spectrum of 𝑘 .

• Case I (𝑑-finite spectrum): By Lemma A.7, we have 𝐺 (𝑁 /𝐻, 1 + 1/𝑁) ≤ 𝐶𝑘 · 𝑑 log(𝑁 /𝐻), where 𝐶𝑘 is absolute constant that depends

on𝑚, and 𝑑 . Then, 𝐵2
equals to

2(1 + 1

𝑁
)𝑅2

𝑄𝐻
2 + 8𝐻2 ·𝐺 (𝑁 /𝐻, 1 + 1/𝑁) + 2𝐻 + 8𝐻2 · log(𝐻/𝜉)

≤ 4𝑅2

𝑄𝐻
2 + 8𝐻2 ·𝐶𝑘 · 𝑑 log(𝑁 /𝐻) + 2𝐻 + 8𝐻2 · log(𝐻/𝜉)

≤ 𝐶2 · 𝐻2 · 𝑑 log(𝑁 /𝜉)

(64)

for sufficient large 𝐶 > 0. Hence, we take 𝐵 = 𝐶 · 𝐻 ·
√︁
𝑑 log (𝑁 /𝜉).

• Case II (𝑑-exponential decay): By Lemma A.7, we get

𝐺 (𝑁 /𝐻, 1 + 1/𝑁) ≤ 𝐶𝑘 · (log(𝑁 /𝐻))1+1/𝑑 (65)

where 𝐶𝑘 is absolute constant that only depends on𝑚 and 𝑑 . Then, 𝐵2
equals to

2(1 + 1

𝑁
)𝑅2

𝑄𝐻
2 + 8𝐻2 ·𝐺 (𝑁 /𝐻, 1 + 1/𝑁) + 2𝐻 + 8𝐻2 · log(𝐻/𝜉)

≤ 4𝑅2

𝑄𝐻
2 + 8𝐻2 ·𝐶𝑘 · (log(𝑁 /𝐻))1+1/𝑑 + 2𝐻 + 8𝐻2 · log(𝐻/𝜉)

≤ 𝐶2𝐻2 ·
[
(log(𝑁 /𝐻))1+1/𝑑 + log(𝐻/𝜉)

]
≤ 𝐶2𝐻2 · [log(𝑁 /𝐻) + log(𝐻/𝜉)]1+1/𝑑

≤ 𝐶2 · 𝐻2 · [log(𝑁 /𝜉)]1+1/𝑑

(66)

for sufficient large 𝐶 > 0. Hence, we take 𝐵 = 𝐶 · 𝐻 ·
√︃
(log𝑁 /𝜉)1+1/𝑑 .

• Case III: (𝑑-polynomial decay) By Lemma A.7, we get

𝐺 (𝑁 /𝐻, 1 + 1/𝑁) ≤ 𝐶𝑘 · (𝑁 /𝐻)
𝑚+1
𝑑+𝑚 · log(𝑁 /𝐻) (67)

where 𝐶𝑘 is absolute constant that only depends on𝑚 and 𝑑 . Then, 𝐵2
equals to

2(1 + 1

𝑁
)𝑅2

𝑄𝐻
2 + 8𝐻2 ·𝐺 (𝑁 /𝐻, 1 + 1/𝑁) + 2𝐻 + 8𝐻2 · log(𝐻/𝜉)

≤ 4𝑅2

𝑄𝐻
2 + 8𝐻2 ·𝐶𝑘 · (𝑁 /𝐻)

𝑑+1
𝑑+𝑚 · log(𝑁 /𝐻) + 2𝐻 + 8𝐻2 · log(𝐻/𝜉)

≤ 𝐶2𝐻2− 𝑚+1
𝑑+𝑚 𝑁

𝑚+1
𝑑+𝑚 · [log(𝑁 /𝐻) + log(𝐻/𝜉)]

≤ 𝐶2𝐻2− 𝑚+1
𝑑+𝑚 𝑁

𝑚+1
𝑑+𝑚 · [log(𝑁 /𝜉)]

(68)

for sufficient large 𝐶 > 0. Thus, it suffices to choose 𝐵 = 𝐶 · 𝑁
𝑚+1

2(𝑑+𝑚) 𝐻
1− 𝑚+1

2(𝑑+𝑚) ·
√︁

log(𝑁 /𝜉).
□

Theorem A.5. Under Assumption 3.2 and 3.1, we set 𝜆 = 1 + 1/𝑁 and 𝐵 is defined as equation (46). Then with probability at least 1 − 𝜉 , it
holds that

𝑉
𝜋∗,𝜃
1
(𝑠0) −𝑉

D̃𝜃
1:𝐻

1
(𝑠0) ≤ 2𝐵

𝐻∑︁
ℎ=1

E𝜋∗
∥𝜙 (𝑠ℎ, 𝑎ℎ)∥ (ΛD̃𝜃ℎℎ)−1

| 𝑠1 = 𝑠0

 (69)

Proof. Recall that the 𝜉-quantifier satisfies the following inequality with probability at least 1 − 𝜉 :����(B̂ℎ𝑉 D̃𝜃ℎ+1:𝐻

ℎ+1

)
(𝑠, 𝑎) −

(
Bℎ𝑉

D̃𝜃
ℎ+1:𝐻

ℎ+1

)
(𝑠, 𝑎)

���� ≤ Γℎ (𝑠, 𝑎), (70)

for all (𝑠, 𝑎) ∈ S × A, ℎ ∈ [𝐻]. Define 𝜋 = {𝜋ℎ}𝐻ℎ=1
as the policy such that 𝑉

D̃𝜃
ℎ:𝐻

ℎ
(𝑠) =

〈
𝑄
D̃𝜃
ℎ:𝐻

ℎ
(𝑠, ·), 𝜋ℎ (· | 𝑠)

〉
A
. For simplicity, we denote

𝛿ℎ (𝑠, 𝑎) =
(
Bℎ𝑉

D̃𝜃
ℎ+1:𝐻

ℎ+1

)
(𝑠, 𝑎) −𝑄 D̃

𝜃
ℎ:𝐻

ℎ
(𝑠, 𝑎) Applying Lemma A.8 with 𝜋 = 𝜋 , and 𝜋 ′ = 𝜋∗, we have

𝑉
D̃𝜃

1:𝐻

1
(𝑠0) −𝑉 𝜋

∗,𝜃
1
(𝑠0) =

𝐻∑︁
ℎ=1

E𝜋∗
[〈
𝑄
D̃𝜃
ℎ:𝐻

ℎ
(𝑠ℎ, ·) , 𝜋ℎ (· | 𝑠ℎ) − 𝜋∗ℎ (· | 𝑠ℎ)

〉
A
| 𝑠1 = 𝑠0

]
+

𝐻∑︁
ℎ=1

E𝜋∗
[
𝑄
D̃𝜃
ℎ:𝐻

ℎ
(𝑠ℎ, 𝑎ℎ) −

(
Bℎ𝑉

D̃𝜃
ℎ+1:𝐻

ℎ+1

)
(𝑠ℎ, 𝑎ℎ) | 𝑠1 = 𝑠0

]
=

𝐻∑︁
ℎ=1

E𝜋∗
[〈
𝑄
D̃𝜃
ℎ:𝐻

ℎ
(𝑠ℎ, ·) , 𝜋ℎ (· | 𝑠ℎ) − 𝜋∗ℎ (· | 𝑠ℎ)

〉
A
| 𝑠1 = 𝑠0

]
−

𝐻∑︁
ℎ=1

E𝜋∗ [𝛿ℎ (𝑠ℎ, 𝑎ℎ) | 𝑠1 = 𝑠0]

(71)

where E𝜋∗ is taken with respect to the trajectory generated by 𝜋∗. Since 𝜋 is greedy with respect to 𝑄
D̃𝜃
ℎ:𝐻

ℎ
, then

𝑉
𝜋∗,𝜃
1
(𝑠0) −𝑉

D̃𝜃
1:𝐻

1
(𝑠0) =

𝐻∑︁
ℎ=1

E𝜋∗ [𝛿ℎ (𝑠ℎ, 𝑎ℎ) | 𝑠1 = 𝑠0]

+
𝐻∑︁
ℎ=1

E𝜋∗
[〈
𝑄
D̃𝜃
ℎ:𝐻

ℎ
(𝑠ℎ, ·) , 𝜋∗ℎ (· | 𝑠ℎ) − 𝜋ℎ (· | 𝑠ℎ)

〉
A
| 𝑠1 = 𝑠0

]
=

𝐻∑︁
ℎ=1

E𝜋∗ [𝛿ℎ (𝑠ℎ, 𝑎ℎ) | 𝑠1 = 𝑠0]

(72)

Recall that the construction of 𝑄
D̃𝜃
ℎ:𝐻

ℎ
in Line 5 in Algorithm 2. For all ℎ ∈ [𝐻] and all (𝑠, 𝑎) ∈ S × A, we have

𝑄
D̃𝜃
ℎ:𝐻

ℎ
(𝑠, 𝑎) = B̂ℎ𝑉

D̃𝜃
ℎ+1:𝐻

ℎ+1 (𝑠, 𝑎) − Γℎ (𝑠, 𝑎)

≤ Bℎ𝑉
D̃𝜃
ℎ+1:𝐻

ℎ+1 (𝑠, 𝑎) ≤ 𝐻 − ℎ + 1

(73)

where the first inequality follows the definition of Γℎ (𝑠, 𝑎) and the second inequality follows that 𝑟ℎ ∈ [0, 1] and 𝑉
D̃𝜃
ℎ+1:𝐻

ℎ+1 (𝑠, 𝑎) ∈ [𝐻 − ℎ].
Then, we have

𝑄
D̃𝜃
ℎ:𝐻

ℎ
(𝑠, 𝑎) =

{
𝑄
D̃𝜃
ℎ:𝐻

ℎ
(𝑠, 𝑎), 0

}+
= max

{
𝑄
D̃𝜃
ℎ:𝐻

ℎ
(𝑠, 𝑎), 0

}
≥ 𝑄 D̃

𝜃
ℎ:𝐻

ℎ
(𝑠, 𝑎) (74)

Then, 𝛿ℎ (𝑠, 𝑎) can be written as

𝛿ℎ (𝑠, 𝑎) =
(
Bℎ𝑉

D̃𝜃
ℎ+1

ℎ+1

)
(𝑠, 𝑎) −𝑄𝜃,D̃ℎ

ℎ
(𝑠, 𝑎)

≤
(
Bℎ𝑉

D̃𝜃
ℎ+1

ℎ+1

)
(𝑠, 𝑎) −𝑄𝜃,D̃ℎ

ℎ
(𝑠, 𝑎)

≤
(
Bℎ𝑉

D̃𝜃
ℎ+1

ℎ+1

)
(𝑠, 𝑎) −

(
B̂ℎ𝑉

D̃𝜃
ℎ+1

ℎ+1

)
(𝑠, 𝑎) + Γℎ (𝑠, 𝑎) ≤ 2Γℎ (𝑠, 𝑎)

(75)

where the inequality follows line 4 in Algorithm 2. Hence we have 𝛿ℎ (𝑠, 𝑎) ≤ 2Γℎ (𝑠, 𝑎). Combine Lemma A.4, equation (72), and equation (75)

, we get

𝑉
𝜋∗,𝜃
1
(𝑠0) −𝑉

D̃𝜃
1:𝐻

1
(𝑠0) ≤ 2

𝐻∑︁
ℎ=1

E𝜋∗ [Γℎ (𝑠ℎ, 𝑎ℎ) | 𝑠1 = 𝑠0]

≤ 2𝐵

𝐻∑︁
ℎ=1

E𝜋∗
∥𝜙 (𝑠ℎ, 𝑎ℎ)∥ (ΛD̃𝜃ℎℎ)−1

| 𝑠1 = 𝑠0

(76)

where 𝐵 satisfies equation (44). □

A.2.3 Proof of Proposition 4.5.

Denote Λℎ = ΛD̃ℎ
ℎ
,Λ′
ℎ
= Λ
D̃′
ℎ

ℎ
, and 𝐾 ′

ℎ
= 𝐾
D̃′
ℎ

ℎ
. Note that Λℎ is a self-adjoint operator, then

Λ′
ℎ
= Λ

1/2
ℎ

(
𝐼H𝑘 + Λ

−1/2
ℎ

𝜙 (𝑧)𝜙 (𝑧)⊤Λ−1/2
ℎ

)
Λ

1/2
ℎ

(77)

We take log det on both sides with the equation (77), then

log det

(
Λ′
ℎ

)
= log det (Λℎ) + log det

(
𝐼H𝑘 + Λ

−1/2
ℎ

𝜙 (𝑧)𝜙 (𝑧)⊤Λ−1/2
ℎ

)
= log det (Λℎ) + log

(
1 + 𝜙 (𝑧)⊤Λ−1

ℎ
𝜙 (𝑧)

) (78)

Note that det (Λℎ) = det (𝜆𝐼 + 𝐾ℎ), and det

(
Λ′
ℎ

)
= det

(
𝜆𝐼 + 𝐾 ′

ℎ

)
for 𝜆 ≥ 1 because 𝜙 (𝑧)⊤Λ−1

ℎ
𝜙 (𝑧) ≤ 1, we have

𝜙 (𝑧)⊤Λ−1

ℎ
𝜙 (𝑧) ≤ 2 log

(
1 + 𝜙 (𝑧)⊤Λ−1

ℎ
𝜙 (𝑧)

)
= 2 ·

[
log det

(
Λ′
ℎ

)
− log det (Λℎ)

]
= 2 ·

[
log det

(
𝐼 + 𝐾 ′

ℎ
/𝜆

)
− log det (𝐼 + 𝐾ℎ/𝜆)

]
Moreover, by equation (2), we have

𝜙 (𝑧)⊤Λ−1

ℎ
𝜙 (𝑧) ≤ 2 ·

[
log det

(
𝐼 + 𝐾 ′

ℎ
/𝜆

)
− log det (𝐼 + 𝐾ℎ/𝜆)

]
(79)

A.2.4 Proof of Corollary 4.8.
The proof is inspired from [8, 18]. Recall that we denote D𝜃 = {(𝑠𝜏

ℎ
, 𝑎𝜏
ℎ
, �̂�
𝜃ℎ
ℎ
(𝑠𝜏
ℎ
, 𝑎𝜏
ℎ
))}𝑁,𝐻

𝜏,ℎ=1
, which is a combination of labeled dataset D1

and unlabeled dataset D𝜃
2
. We partition dataset D𝜃 into 𝐻 disjoint and equally sized sub dataset {D̃𝜃

ℎ
}𝐻
ℎ=1

, where |D̃𝜃
ℎ
| = 𝑁ℎ = 𝑁 /𝐻 . Let

Iℎ = {𝑁ℎ · (ℎ − 1) + 1, . . . , 𝑁ℎ · ℎ} =
{
𝜏ℎ,1, · · · , 𝜏ℎ,𝑁ℎ

}
satisfy D̃𝜃

ℎ
= {(𝑠𝜏

ℎ
, 𝑎𝜏
ℎ
, �̂�
𝜃ℎ
ℎ
(𝑠𝜏
ℎ
, 𝑎𝜏
ℎ
))}𝜏∈Iℎ . Define

𝑍ℎ =
∑︁
𝜏∈Iℎ

𝐴𝜏
ℎ
, 𝐴𝜏

ℎ
= 𝜙

(
𝑠𝜏
ℎ
, 𝑎𝜏
ℎ

)
𝜙

(
𝑠𝜏
ℎ
, 𝑎𝜏
ℎ

)⊤
− Σℎ, (80)

where Σℎ = E𝜋
[
𝜙 (𝑠ℎ, 𝑎ℎ) 𝜙 (𝑠ℎ, 𝑎ℎ)⊤

]
for all ℎ ∈ [𝐻]. Clearly, E𝜋 [𝐴𝜏ℎ] = 0 from equation (80). Note that E𝜋 is taken with respect to the

trajectory induced by the fixed behavior policy 𝜋 in the underlying MDP, and the set {𝐴𝜏
ℎ
}𝜏∈Iℎ is i.i.d. and centered for all ℎ ∈ [𝐻].

As shown in Section 3.3, The feature mapping 𝜙 : Z → H satisfies

𝜙 (𝑧) =
∞∑︁
𝑗=1

𝜎 𝑗 ·𝜓 𝑗 (𝑧) ·𝜓 𝑗 =
∞∑︁
𝑗=1

√
𝜎 𝑗 ·𝜓 𝑗 (𝑧) ·

(√
𝜎 𝑗 ·𝜓 𝑗

)
(81)

Let 𝑡 be any positive integer and let Π𝑡 : H → H denote the projection onto the subspace spanned by

{
𝜓 𝑗

}
𝑗∈[𝑡] , i.e., Π𝑡 [𝜙 (𝑧)] =∑𝑡

𝑗=1
𝜎 𝑗 ·𝜓 𝑗 (𝑧) ·𝜓 𝑗 .

For 𝑑-finite Spectrum case, consider the case where 𝜎 𝑗 = 0 for all 𝑗 > 𝑑 . Then, 𝜙 (𝑧) = Π𝑑 [𝜙 (𝑧)] for any 𝑧 ∈ Z. That is, 𝐴𝜏
ℎ
can be written

as

𝐴𝜏
ℎ

:=𝑊 𝜏
ℎ
−𝑊ℎ, 𝑍ℎ =

∑︁
𝜏∈Iℎ

𝐴𝜏
ℎ
=

∑︁
𝜏∈Iℎ

𝑊 𝜏
ℎ
−𝑊ℎ,

(82)

where𝑊 𝜏
ℎ

= 𝜙 (𝑧𝜏
ℎ
)𝜙 (𝑧𝜏

ℎ
)⊤ as a 𝑑 × 𝑑 matrix, and𝑊ℎ = E𝜋

[
𝜙 (𝑧ℎ)𝜙 (𝑧ℎ)⊤

]
. By the boundness of kernel(i.e. sup𝑧∈Z 𝑘 (𝑧, 𝑧) ≤ 1), we have

∥𝜙 (𝑧)∥H𝑘 ≤ 1,∀𝑧 ∈ Z. By Jensen’s inequality, we have

∥Σℎ ∥op
≤ E𝜋

[𝜙 (𝑠ℎ, 𝑎ℎ) 𝜙 (𝑠ℎ, 𝑎ℎ)⊤op

]
≤ 1

Similarly, for all ℎ ∈ [𝐻] and all 𝜏 ∈ Iℎ , as it holds that𝐴𝜏
ℎ

op
≤

𝑊 𝜏
ℎ

op
+ ∥𝑊ℎ ∥op

≤ 2

we have E𝜋 [
𝑍⊤
ℎ
𝑍ℎ

]
op

= 𝑁ℎ

E𝜋 [(
𝐴𝜏
ℎ

)⊤
𝐴𝜏
ℎ

]
op

≤ 𝑁ℎ
E𝜋 [

𝐴𝜏
ℎ

(
𝐴𝜏
ℎ

)⊤]
op

≤ 4𝑁ℎ

Similarly, we have (𝐴𝜏ℎ)⊤𝐴𝜏ℎ
op

≤
(𝐴𝜏ℎ)⊤

op

·
𝐴𝜏
ℎ

op
≤ 4 and

E𝜋 [
𝑍⊤
ℎ
𝑍ℎ

]
op
≤ 4𝑁ℎ

Applying Lemma A.9 for 𝑍ℎ defined in equation (80), for any fixed ℎ ∈ [𝐻] and any 𝑙 ≥ 0, we have

P
(
∥𝑍ℎ ∥op

> 𝑙

)
= P

©«
 ∑︁
𝜏∈Iℎ

𝐴𝜏
ℎ

op

> 𝑙
ª®®¬ ≤ 2𝑑 · exp

(
− 𝑙2/2

4𝑁ℎ + 2𝑙/3

)
For all 𝛿 ∈ (0, 1), we set 𝑙 =

√︁
10𝑁ℎ log(4𝑑𝐻/𝛿), for sufficiently large 𝑁ℎ ≥ 5 log(4𝑑𝐻/𝛿), we obtain ∥𝑍ℎ ∥op ≤

√︁
10𝑁ℎ log(4𝑑𝐻/𝛿) holds

with probability at least 1 − 𝛿/2𝐻 .
Moreover, 𝑍ℎ defined in equation (80) can be written as

𝑍ℎ =
∑︁
𝜏∈Iℎ

𝜙

(
𝑥𝜏
ℎ
, 𝑎𝜏
ℎ

)
𝜙

(
𝑥𝜏
ℎ
, 𝑎𝜏
ℎ

)⊤
− 𝑁ℎ · Σℎ = (Λℎ − 𝜆 · 𝐼) − 𝑁ℎ · Σℎ (83)

Recall that there exist positive constant 𝑐min such that inf ∥ 𝑓 ∥H𝑘 =1
⟨𝑓 , Σℎ 𝑓 ⟩H𝑘 ≥ 𝑐min. For sufficiently large 𝑁ℎ ≥ 4𝐶2

𝑐2

min

log (4𝑑𝐻/𝛿), we have

inf

∥ 𝑓 ∥H𝑘 =1

⟨𝑓 , Λℎ
𝑁ℎ

𝑓 ⟩H𝑘 ≥ inf

∥ 𝑓 ∥H𝑘 =1

⟨𝑓 ,
(
𝑍ℎ

𝑁ℎ
+ Σℎ +

𝜆

𝑁ℎ
𝐼

)
𝑓 ⟩H𝑘

≥ 1

𝑁ℎ
inf

∥ 𝑓 ∥H𝑘 =1

⟨𝑓 , 𝑍ℎ 𝑓 ⟩H𝑘 + inf

∥ 𝑓 ∥H𝑘 =1

⟨𝑓 , Σℎ 𝑓 ⟩H𝑘

≥ 𝑐min −
1

𝑁ℎ
∥𝑍ℎ ∥op ≥ 𝑐min −𝐶

√︄
log (4𝐻𝐺 (𝑁ℎ, 𝜆)/𝛿)

𝑁ℎ
≥ 𝑐min

2

(84)

Hence, it holds that

∥Λ−1

ℎ
∥op ≤

2

𝑁ℎ · 𝑐min

(85)

for all ℎ ∈ [𝐻]. This implies that

∥Λ−
1

2

ℎ
𝜙 (𝑠, 𝑎)∥H𝑘 ≤ ∥𝜙 (𝑠, 𝑎)∥H𝑘 ∥Λ

−1

ℎ
∥1/2

op
≤ 𝑐′/

√︁
𝑁ℎ (86)

where 𝑐′ =
√︁

2/𝑐min and using the fact that ∥𝜙 (𝑠, 𝑎)∥H𝑘 ≤ 1 for all (𝑠, 𝑎) ∈ S × A.

We define the event

E∗
1
=

{
∥Λ−

1

2

ℎ
𝜙 (𝑠, 𝑎)∥H𝑘 ≤ 𝑐

′/
√︁
𝑁ℎ for all (𝑠, 𝑎) ∈ S × A and all ℎ ∈ [𝐻]

}
By equation (86), we have P(E∗

1
) ≥ 1 − 𝛿/2 for 𝑁ℎ ≥ 4𝐶2

𝑐2

min

log (4𝑑𝐻/𝛿). Recall that for 𝑑-finite spectrum case, we have

𝛽ℎ (𝛿) =
√︂

1 + 1

𝑁1

S +
√︂
𝐶1 · 𝑑 · log𝑁1 + log(1

𝛿2
)

𝐵 = 𝐶2 · 𝐻 ·
√︁
𝑑 log (𝑁 /𝛿)

(87)

Use big tilde O notation, they can be written as

𝛽ℎ (𝛿) = ˜O(
√
𝑑)

𝐵 = ˜O(𝐻
√
𝑑)

(88)

Combining the result in Theorem 4.3 and equation (88) with 𝛿 = 𝛿/4, we have

SubOpt(𝜋 ; 𝑠) ≤ 2

𝐻∑︁
ℎ=1

𝛽ℎ (𝛿)E𝜋∗
[
∥𝜙 (𝑠ℎ, 𝑎ℎ)∥ (ΛD1

ℎ
)−1
| 𝑠1 = 𝑠

]
+ 2𝐵

𝐻∑︁
ℎ=1

E𝜋∗

[
∥𝜙 (𝑠ℎ, 𝑎ℎ)∥

(Λ
D̃𝜃
ℎ

ℎ
)−1

| 𝑠1 = 𝑠

]
≤ 2𝛽ℎ (𝛿) · 𝐻 · 𝑐′/

√︁
𝑁1 + 2𝐵 · 𝐻 · 𝑐′/

√︁
𝑁ℎ

= ˜O(𝐻

√︄
𝑑

𝑁1

) + ˜O(𝐻2

√︄
𝑑

𝑁ℎ
)

(89)

where the last equality follows from the fact that 𝑁ℎ = 𝑁 /𝐻 and 𝑁 = 𝑁1 + 𝑁2 for all ℎ ∈ [𝐻].

A.3 Sufficient Lemma
Lemma A.6 (Concentration of Self-Normalized Processes in RKHS [7]). LetH be an RKHS defined over X ⊆ R𝑑 with kernel function

𝐾 (·, ·) : X × X → R. Let {𝑥𝜏 }∞𝜏=1
⊂ X be a discrete time stochastic process that is adapted to the filtration {F𝑡 }∞𝑡=0

. Let {𝜖𝜏 }∞𝜏=1
be a real-valued

stochastic process such that (i) 𝜖𝜏 is F𝜏 -measurable and (ii) 𝜖𝜏 is zero-mean and 𝜎-sub-Gaussian conditioning on F𝜏−1, i.e.,

E [𝜖𝜏 | F𝜏−1] = 0, E
[
𝑒𝜆𝜖𝜏 | F𝜏−1

]
≤ 𝑒𝜆

2𝜎2/2, ∀𝜆 ∈ R

Moreover, for any 𝑡 ≥ 2, let 𝐸𝑡 = (𝜖1, . . . , 𝜖𝑡−1)⊤ ∈ R𝑡−1 and 𝐾𝑡 ∈ R(𝑡−1)×(𝑡−1) be the Gram matrix of {𝑥𝜏 }𝜏∈[𝑡−1] . Then for any 𝜂 > 0 and
any 𝛿 ∈ (0, 1), with probability at least 1 − 𝛿 , it holds simultaneously for all 𝑡 ≥ 1 that

𝐸⊤𝑡
[
(𝐾𝑡 + 𝜂 · 𝐼)−1 + 𝐼

]−1

𝐸𝑡 ≤ 𝜎2 · log det [(1 + 𝜂) · 𝐼 + 𝐾𝑡] + 2𝜎2 · log(1/𝛿)

Proof. Please refer to Theorem 1 in [7] □

Lemma A.7 (Lemma D.5 in [41]). LetZ be a compact subset of R𝑑 and 𝐾 : Z ×Z → R be the RKHS kernel ofH . We assume 𝐾 is a bounded
kernel so that sup𝑧∈Z 𝐾 (𝑧, 𝑧) ≤ 1, and 𝐾 is continuously differentiable onZ×Z. Moreover, let𝑇𝐾 be the integral operator induced by 𝐾 and the
Lebesgue measure onZ, such that𝑇𝑘 𝑓 (𝑧) =

∫
Z 𝑘 (𝑧, 𝑧

′) · 𝑓 (𝑧′) d𝑧′, ∀𝑓 ∈ L2 (Z).. Let
{
𝜎 𝑗

}
𝑗≥1

be the non-increasing sequence of eigenvalues

of 𝑇𝐾 . Recall the definition of maximal information gain in equation (2). We assume
{
𝜎 𝑗

}
𝑗≥1

satisfies one of the following eigenvalue decay
conditions:

• 𝛾-finite spectrum: 𝜎 𝑗 = 0 for all 𝑗 > 𝛾 , where 𝛾 is a positive integer.
• 𝛾-exponential decay: there exists some constants 𝐶1,𝐶2 > 0 such that 𝜎 𝑗 ≤ 𝐶1 · exp (−𝐶2 · 𝑗𝛾) for all 𝑗 ≥ 1, where 𝛾 > 0 is a positive
constant.
• 𝛾-polynomial decay: there exists some constants 𝐶1 > 0, 𝜏 ∈ [0, 1/2) and 𝐶𝜓 > 0 such that 𝜎 𝑗 ≤ 𝐶1 · 𝑗−𝛾 and sup𝑧∈Z 𝜎

𝜏
𝑗
·
��𝜓 𝑗 (𝑧)�� ≤ 𝐶𝜓

for all 𝑗 ≥ 1, where 𝛾 > 1.

Suppose 𝜆 ∈ [𝑐1, 𝑐2] for absolute constants 𝑐1, 𝑐2. Then we have

𝐺 (𝐾, 𝜆) ≤

𝐶 · 𝛾 · log𝐾 𝛾-finite spectrum
𝐶 · (log𝐾)1+1/𝛾 𝛾-exponential decay
𝐶 · 𝐾 (𝑑+1)/(𝛾+𝑑) · log𝐾 𝛾-polynomial decay

where 𝐶 is an absolute constant that only depends on 𝑑,𝛾,𝐶1,𝐶2,𝐶, 𝑐1 and 𝑐2.

Proof. Please refer to Lemma D.5 in [41] for a detailed proof. □

Lemma A.8 (Extended Value Difference [5]). Let 𝜋 = {𝜋ℎ}𝐻ℎ=1
and 𝜋 ′ =

{
𝜋 ′
ℎ

}𝐻
ℎ=1

be any two policies and let
{
𝑄ℎ

}𝐻
ℎ=1

be any estimated

𝑄-functions. For all ℎ ∈ [𝐻], we define the estimated value function 𝑉ℎ : S → R by setting 𝑉ℎ (𝑥) =
〈
𝑄ℎ (𝑥, ·), 𝜋ℎ (· | 𝑥)

〉
A

for all 𝑥 ∈ S. For all
𝑥 ∈ S, we have

𝑉1 (𝑥) −𝑉 𝜋
′

1
(𝑥) = ∑𝐻

ℎ=1
E𝜋 ′

[〈
𝑄ℎ (𝑠ℎ, ·) , 𝜋ℎ (· | 𝑠ℎ) − 𝜋 ′ℎ (· | 𝑠ℎ)

〉
A
| 𝑠1 = 𝑥

]
+∑𝐻

ℎ=1
E𝜋 ′

[
𝑄ℎ (𝑠ℎ, 𝑎ℎ) −

(
Bℎ𝑉ℎ+1

)
(𝑠ℎ, 𝑎ℎ) | 𝑠1 = 𝑥

]
where E𝜋 ′ is taken with respect to the trajectory generated by 𝜋 ′, while Bℎ is the Bellman operator defined in Section 3.1.

Proof. Fix ℎ ∈ [𝐻]. Denote that 𝜄𝑖 = 𝑄𝑖 − B𝑖𝑉𝑖+1. For all 𝑖 ∈ [ℎ, 𝐻] and 𝑠 ∈ S, we have

E𝜋 ′
[
𝑉𝑖 (𝑠𝑖) −𝑉 𝜋

′
𝑖 (𝑠𝑖) | 𝑠ℎ = 𝑠

]
= E𝜋 ′

[〈
𝑄𝑖 (𝑠𝑖 , ·) , 𝜋𝑖 (· | 𝑠𝑖)

〉
−

〈
𝑄𝜋

′
𝑖 (𝑠𝑖 , ·) , 𝜋

′
𝑖 (· | 𝑠𝑖)

〉
| 𝑠ℎ = 𝑠

]
= E𝜋 ′

[〈
𝑄𝑖 (𝑠𝑖 , ·) , 𝜋𝑖 (· | 𝑠𝑖) − 𝜋 ′𝑖 (· | 𝑠𝑖)

〉
+

〈
𝑄𝑖 (𝑠𝑖 , ·) −𝑄𝜋

′
𝑖 (𝑠𝑖 , ·) , 𝜋

′
𝑖 (· | 𝑠𝑖)

〉
| 𝑠ℎ = 𝑠

]
= E𝜋 ′

[〈
𝑄𝑖 (𝑠𝑖 , ·) , 𝜋𝑖 (· | 𝑠𝑖) − 𝜋 ′𝑖 (· | 𝑠𝑖)

〉
| 𝑠ℎ = 𝑠

]
+ E𝜋 ′

[〈
𝜄𝑖 (𝑠𝑖 , ·) + B𝑖𝑉𝑖+1 (𝑠𝑖 , ·) −

(
𝑟𝑖 (𝑠𝑖 , ·) + P𝑖𝑉 𝜋

′
𝑖+1 (𝑠𝑖 , ·)

)
, 𝜋 ′𝑖 (· | 𝑠𝑖)

〉
| 𝑠ℎ = 𝑠

]
= E𝜋 ′

[〈
𝑄𝑖 (𝑠𝑖 , ·) , 𝜋𝑖 (· | 𝑠𝑖) − 𝜋 ′𝑖 (· | 𝑠𝑖)

〉
| 𝑠ℎ = 𝑠

]
+ E𝜋 ′ [𝜄𝑖 (𝑠𝑖 , 𝑎𝑖) | 𝑠ℎ = 𝑠]

+ E𝜋 ′
[
P𝑖

(
𝑉𝑖+1 −𝑉 𝜋

′
𝑖+1

)
(𝑠𝑖 , 𝑎𝑖) | 𝑠ℎ = 𝑠

]
= E𝜋 ′

[〈
𝑄𝑖 (𝑠𝑖 , ·) , 𝜋𝑖 (· | 𝑠𝑖) − 𝜋 ′𝑖 (· | 𝑠𝑖)

〉
| 𝑠ℎ = 𝑠

]
+ E𝜋 ′ [𝜄𝑖 (𝑠𝑖 , 𝑎𝑖) | 𝑠ℎ = 𝑠]

+ E𝜋 ′
[
𝑉𝑖+1 (𝑠𝑖+1) −𝑉 𝜋

′
𝑖+1 (𝑠𝑖+1) | 𝑠ℎ = 𝑠

]

(90)

where P𝑖 is the transition operator defined in Section 3.1. Rewrite equation (90), we have

E𝜋 ′
[
𝑉𝑖 (𝑠𝑖) −𝑉 𝜋

′
𝑖 (𝑠𝑖) | 𝑠ℎ = 𝑠

]
− E𝜋 ′

[
𝑉𝑖+1 (𝑠𝑖+1) −𝑉 𝜋

′
𝑖+1 (𝑠𝑖+1) | 𝑠ℎ = 𝑠

]
= E𝜋 ′

[〈
𝑄𝑖 (𝑠𝑖 , ·) , 𝜋𝑖 (· | 𝑠𝑖) − 𝜋 ′𝑖 (· | 𝑠𝑖)

〉
| 𝑠ℎ = 𝑠

]
+ E𝜋 ′ [𝜄𝑖 (𝑠𝑖 , 𝑎𝑖) | 𝑠ℎ = 𝑠]

(91)

Taking

∑𝐻
𝑖=ℎ

on equation (91), then

𝑉ℎ (𝑠) −𝑉 𝜋
′

ℎ
(𝑠) =

𝐻∑︁
𝑖=ℎ

E𝜋 ′
[〈
𝑄𝑖 (𝑠𝑖 , ·) , 𝜋𝑖 (· | 𝑠𝑖) − 𝜋 ′𝑖 (· | 𝑠𝑖)

〉
| 𝑠ℎ = 𝑠

]
+

𝐻∑︁
𝑖=ℎ

E𝜋 ′
[
𝑄ℎ (𝑠𝑖 , 𝑎𝑖) − B𝑖𝑉𝑖+1 (𝑠𝑖 , 𝑎𝑖) | 𝑠ℎ = 𝑠

] (92)

letting ℎ = 1 completes the proof. □

Lemma A.9 (Matrix Bernstein Ineqality [31]). Suppose that {𝐴𝑘 }𝑛𝑘=1
are independent and centered random matrices in R𝑑1×𝑑2 , that

is, E [𝐴𝑘] = 0 for all 𝑘 ∈ [𝑛]. Also, suppose that such random matrices are uniformly upper bounded in the matrix operator norm, that is,
∥𝐴𝑘 ∥𝑜𝑝 ≤ 𝐿 for all 𝑘 ∈ [𝑛]. Let 𝑍 =

∑𝑛
𝑘=1

𝐴𝑘 and

𝑣 (𝑍) = max

{E [
𝑍𝑍⊤

]
𝑜𝑝
,
E [

𝑍⊤𝑍
]
𝑜𝑝

}
= max

 𝑛∑︁
𝑘=1

E
[
𝐴𝑘𝐴

⊤
𝑘

]
𝑜𝑝

,

 𝑛∑︁
𝑘=1

E
[
𝐴⊤
𝑘
𝐴𝑘

]
𝑜𝑝

 .
For all 𝑡 ≥ 0, we have

P
(
∥𝑍 ∥𝑜𝑝 ≥ 𝑡

)
≤ (𝑑1 + 𝑑2) · exp

(
− 𝑡2/2
𝑣 (𝑍) + 𝐿/3 · 𝑡

)
Proof. See Tropp et al. [31, Theorem 1.6.2] for a detailed proof. □

	Abstract
	1 Introduction
	2 Related Works
	2.1 Offline Reinforcement Learning
	2.2 Offline Data Sharing

	3 Background
	3.1 Episodic Markov Decision Process
	3.2 Assumption of Offline Data
	3.3 Reproducing Kernel Hilbert Space
	3.4 Pessimistic Value Iteration and Kernel Setting

	4 Unsupervised Data Sharing
	4.1 Pessimistic Reward Estimation
	4.2 Theoretical Analysis

	5 Experiments
	5.1 Asymptotic Behavior of V1(s)
	5.2 Comparison between Finite Dimensional and Kernel Features

	6 Conclusion
	References
	A Appendix
	A.1 Pessimistic Value Iteration
	A.2 Proof of Main Result
	A.3 Sufficient Lemma

