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ABSTRACT
State-of-the-art multi-agent reinforcement learning (MARL) algo-
rithms such as MADDPG and MAAC fail to scale in situations
where the number of agents becomes large. Mean-�eld theory has
shown encouraging results in modeling macroscopic agent behav-
ior for teams with a large number of agents through a continuum
approximation of the agent population and its interaction with the
environment. In this work, we extend proximal policy optimiza-
tion (PPO) to the mean-�eld domain by introducing the Mean-Field
Multi-Agent Proximal Policy Optimization (MF-MAPPO), a novel
algorithm that utilizes the e�ectiveness of the �nite-population
mean-�eld approximation in the context of zero-sum competitive
multi-agent games between two teams. The proposed algorithm
can be easily scaled to hundreds and thousands of agents in each
team as shown through numerical experiments. In particular, the
algorithm is applied to realistic applications such as large-scale
o�ense-defense battle�eld scenarios.

KEYWORDS
Multi-Agent Reinforcement Learning, Game Theory, Large-Scale
Systems

1 INTRODUCTION
Existing state-of-the-artmulti-agent reinforcement learning (MARL)
algorithms, such as MADDPG and MAAC [11], encounter signi�-
cant scalability challenges as the number of agents increases. The as-
sociated complexities arise due to well-known curse of dimensional-
ity. One promising direction that addresses the scalability challenge
in MARL is through mean-�eld theory, which approximates large-
scale agent interactions with the environment at an in�nite popula-
tion limit [6]. Two major areas of mean-�eld research are the mean-
�eld games (MFGs) [5, 6, 19] which focus on non-cooperative agents,
and mean-�eld control problems (MFC) [6, 15, 18], which study
fully cooperative scenarios. However, work in mixed collaborative-
competitive settings is relatively sparse.

The recent work in [4] formulated and studied zero-sum mean-
�eld team games (ZS-MFTG), which models large-population teams
competing against each other while agents within a team coop-
erate. In a two-team scenario, [4] utilized a common-information
decomposition [12] to reduce the original problem to training two
�ctitious team coordinators, making the approach agnostic to the
actual number of agents in the team, thus signi�cantly reducing
the computational load. The existence of approximate optimal team
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policies that are identical across agents was also established. How-
ever, numerically computing the corresponding team policies is not
straightforward. Our work makes a contribution in this direction by
leveraging deep reinforcement learning and exploiting theoretical
properties of the MFTG obtained in [4], speci�cally the identical
team policies and the common-information decomposition.

We propose the Mean-Field Multi-Agent Proximal Policy Op-
timization algorithm (MF-MAPPO), a novel multi-agent RL algo-
rithm that extends PPO to accommodate intra-team cooperation
and inter-team competition in large-population scenarios. The pro-
posed algorithm employs a shared actor and critic for each team,
with the information commonly available to all agents as inputs.

As shown in extensive numerical experiments, backed by theo-
retical guarantees from [4], our method scales e�ciently to teams
with hundreds or thousands of agents. Notably, the algorithm oper-
ates independently of individual agents’ private information and
is agnostic to the speci�c index/identity of each agent. To the best
of our knowledge, this is the �rst algorithm that applies PPO to
learning mixed competitive and collaborative mean-�eld problems.

The main contributions of our work are: 1) the MF-MAPPO
algorithm that relies on shared critic and actor to e�ciently learn
large-scale team games; 2) novel MFTG scenarios (constrained Rock-
Paper-Scissor and Battle�eld) as future benchmarking for validation
of the scalability of di�erent MARL algorithms; 3) demonstration
of MF-MAPPO’s superior e�ciency and performance over existing
MARL algorithms through comprehensive numerical experiments.

2 RELATEDWORK
Recent advances in learning mean-�eld games have resulted in
several model-free reinforcement learning algorithms that span
from Q-function based policy gradients to value-function based
policy optimization techniques. Reference [24] proposes MF-Q and
MF-AC that parameterize the mean-�eld Q-function by a neural
network. However, the mean-�eld approach proposed in [24] di�ers
substantially from our formulation, as it de�nes the mean-�eld over
neighboring actions rather than over the entire state-space.

Along the lines of Q-function based MARL, reference [19] pro-
posed an extension of the original Deep Deterministic Policy Gra-
dient (DDPG) algorithm [10], called DDPG-MFTG, to prescribe a
team-level policy based on mean-�eld observations of all teams.
We adopt DDPG-MFTG as a baseline and demonstrate that our
proposed method consistently outperforms it, both in terms of sta-
bility and performance. Notably, DDPG-MFTG has been primarily
evaluated in simple grid-world environments with team-decoupled
transition dynamics. It has not been evaluated in environments
with tightly coupled mean-�eld interactions or strict collaborative-
competitive scenarios like zero-sum games, where a balance be-
tween competition and coordination is paramount. Our work, in



contrast, demonstrates robustness and superior performance under
precisely these settings.

Reference [25] shows that policy mirror descent (PMD) along
with Temporal Di�erence (TD) learning converges to an approx-
imate Nash Equilibrium of an # -player �nite horizon dynamic
game (FH-DG). This is another instance of Q-function based learn-
ing. Although their approach is more general in terms of the reward
structure and heterogeneity among agents, the analysis is limited
to mean-�eld games and excludes mixed collaborative-competitive
team games. Alternatively, [23] introduced ECA-Net, a GAN-based
method to solve a di�erential game between two adversarial teams
of cooperative players in an attack-defense situation. However, their
work focuses on a continuous state-action space setting while we
consider anMDP-type problem formulation with strictly con�icting
zero-sum rewards.

Closest to the proposed algorithm is the paper [2], where the
authors introduced a PPO-based algorithm for constructing optimal
policies in the context of mean-�eld control. However, [2] requires
the a-priori knowledge of a mapping from the high-level policy to
the agent policies which adds an additional computational step to
the algorithm; this is in contrast to our method that directly trains
MFTGs using a single identical team policy.

Unlike the methods discussed above, our algorithm is centered
around a value function based approach and builds upon the suc-
cesses of PPO and MA-PPO algorithms [17, 26], and extends those
to the competitive mean-�eld team setting. Following the standard
PPO architecture, we do not provide the agents’ actions to the critic
network, which greatly reduces the size of the neural network. In
fact, as we will show later on, it is su�cient to consider a critic
network with just the team distributions (mean-�elds) as the sole
inputs to the network. This also makes the value function network
independent of the number of agents, thereby leading to better scal-
ability. As MF-MAPPO employs a shared actor and critic for each
team, a single bu�er per team su�ces for storing team data, thus
reducing memory usage and streamlining experience collection
without sacri�cing the performance of the learned policy. Another
key feature of our proposed algorithm is the simultaneous training
of both competing teams. Unlike iterative best-response methods
[9, 20], which involve alternate policy updates, simultaneous train-
ing allows both teams to adapt to each other’s most recent policies
more dynamically.

3 PROBLEM FORMULATION
3.1 Zero-Sum Mean-Field Team Game
The zero-sum mean-�eld team game models a discrete-time sto-
chastic game between two large teams of agents [5]. The Blue and
Red teams consist of #1 and #2 identical agents for each team, with
the total number of agents # =#1+#2. Let -#1

8,C 2 X and*#1
8,C 2 U

represent the state and action of Blue agent 8 2 [#1] at time C . Here,
X and U are the �nite state and action spaces of the Blue team.
Similarly,.#2

9,C 2 Y and+#2
9,C 2 V denote the state and action of Red

agent 9 2 [#2]. The joint state-action variables for the Blue and
Red teams are denoted as (X#1

C ,U#1
C ) and (Y#2

C ,V#2
C ), respectively.

Here, we use uppercase letters to denote random variables (e.g.,
- , M) and lowercase letters to denote their realizations (e.g., G , `).

Figure 1: Battle�eld Scenario as an example of ZS-MFTG.

For a set ⇢, we denote the space of probability measures over ⇢ as
P(⇢).

De�nition 3.1. The empirical distributions (ED) for the Blue and
Red teams are de�ned as

M
#1
C (G) =

1
#1

#1’
8=1

1G (-
#1
8,C ), G 2 X, (1a)

N
#2
C (~) =

1
#2

#2’
9=1

1~ (.
#2
9,C ), ~ 2 Y, (1b)

where 10
�
1
�
= 1 if 0 = 1 and 0 otherwise. Speci�cally, M#1

C (G)

gives the fraction of Blue agents at state G and similarly forN#2
C (~).

We use M
#1
C = Emp` (X

#1
C ) and N

#2
C = Empa (Y

#2
C ) to denote

the EDs computed from the given joint states. Note that the Emp
operators remove agent index information, so one cannot determine
the state of a speci�c Blue agent 8 from M

#1
C .

We consider weakly-coupled dynamics where the dynamics of
each individual agent is coupled with other agents through the EDs
[4]. For Blue agent 8 , its stochastic transition is governed by the
transition kernel 5C : X ⇥U ⇥ P(X) ⇥ P(Y) ! P(X) so that

P(-#1
8,C+1 = G

#1
8,C+1 |*

#1
8,C = D#1

8,C ,X
#1
C = x#1

C ,Y#2
C = y#2

C )

= 5C (G
#1
8,C+1 |G

#1
8,C ,D

#1
8,C , `

#1
C ,a#2

C ), (2)

where `#1
C = Emp` (x

#1
C ) and a#2

C = Empa (y
#2
C ). Similarly, the

dynamics of Red agent 9 is governed by the transition kernel 6C :
Y⇥V⇥P(X)⇥P(Y) ! P(Y). All agents in the Blue team receive
an identical weakly-coupled team reward, i.e., AC ¨ AC (`C , aC ) :
P(X) ⇥ P(Y) ! R. Following the zero-sum structure, the Red
team agents receive �AC (`C ,aC ) as their rewards. We assume that
the Blue (Red) team is the maximizing (minimizing) team.

Figure 1 depicts a battle�eld scenario of an MFTG between two
teams (Blue and Red) on an = ⇥ = grid world.

3.2 Large-Population Optimization
We consider a mean-�eld sharing information structure [1], where
each agent observes its own state and the two team EDs, where the
EDs serve as common information accessible to both teams. Specif-
ically, the Blue and Red agents seek to construct mixed Markov
policies with the following structure

q8,C : U ⇥ X ⇥ P(X) ⇥ P(Y) ! [0, 1], (3a)
k 9,C : V ⇥Y ⇥ P(X) ⇥ P(Y) ! [0, 1], (3b)

where the Blue policy q8,C (D |G#1
8,C , `

#1
C ,a#2

C ) dictates the probability
that Blue agent 8 selects actionD given its state G#1

8,C and the observed



team EDs `#1
C and a#2

C . Note that each agent’s individual state
is its private information, while the team EDs are the common
information available to all # agents.

Let �C ( C ) denote the set of individual Blue (Red) policies at
time C . We de�ne the Blue team policy q#1

C = {q8,C }
#1
8=1 as the collec-

tion of the #1 Blue agent individual policies, and denote the set of
Blue team policies as �#1

C =⇥#1�C . Similarly, the Red team policy
is denoted ask#2

C 2  #2
C =⇥#2 C .

De�nition 3.2 (Identical team policy). The Blue team policyq#1
C =

(q#1
1,C , . . . ,q

#1
#1,C

) is an identical, if q81,C = q82,C for all time C and
81, 82 2 [#1]. We denote the set of identical Blue team policies as �.

The de�nition and notation extend naturally to the Red team,
and the set of identical Red team policies is denoted as  .

The performance of the team policy pair (q#1 ,k#2 ) is given by
the expected cumulative reward

�# ,q#1 ,k#2 �x#1
0 , y#2

0
�
= Eq#1 ,k#2

h )’
C=0

AC (M
#1
C ,N#2

C )

���x#1
0 , y#2

0

i
.

When the Blue team considers its worst-case performance, we have
the following max-min optimization:

�# ⇤ (x#1
0 , y#2

0 ) = max
q#1 2�#1

min
k#2 2 #2

�# ,q#1 ,k#2
(x#1

0 , y
#2
0 ), (4)

where �# ⇤ is the lower game value for the �nite-population game.
Similarly, the minimizing Red team considers a min-max optimiza-
tion problem, which leads to the upper game value. Note that we
allow both teams to follow non-identical team policies in (4).

3.3 In�nite-Population Solution
To reduce the complexity of team policy optimization domains
in (4), the authors of [4] proposed to examine team behaviors un-
der identical team policies at the in�nite-population limit. It was
shown that the team joint states can be represented using the team
population distribution, which coincides with the state distribution
of a typical agent. Such distributions are referred to as the mean-
�elds (MFs), and we denoted them as `C and aC for the Blue and
Red teams, respectively. As proved in [4], MFs induced by identical
team policies in an in�nite-population game closely approximate
the EDs induced by non-identical team policies in the correspond-
ing �nite-population game, which justi�es the simpli�cation of the
optimization domain in (4) to identical team policies.

For the in�nite-population game, the performance of the identical
team policies (q,k ) 2 � ⇥  is measured by

�q,k (`0,a0) =
)’
C=0

AC (`C ,aC ), (5)

where `C and aC follow a deterministic dynamics [4] similar to the
state distribution propagation of a controlled Markov chain. The
worst-case performance of the Blue team in this in�nite-population
game is then given by the lower game value

� ⇤ (`0,a0) = max
q2�

min
k 2 

�q,k (`0,a0), (6)

where the optimization domain is restricted to identical team poli-
cies. Reference [4] exploited the simpli�ed optimization domain

in (6) and proposed to transform the optimization to an equivalent
zero-sum game between two �ctitious coordinators. The optimal
identical team policies can then be solved via dynamic program-
ming. The following performance guarantees was established in [4].

T������ 3.3. The optimal identical Blue team policy q⇤ obtained
from the equivalent zero-sum coordinator game is an n-optimal Blue
team policy. Formally, for all joint states x#1 and y#2 ,

min
k#2 2 #2

�# ,q⇤,k#2
(x#1 , y#2 ) � �# ⇤ (x#1 , y#2 ) � O

⇣ 1p
#

⌘
(7)

where # = min{#1,#2}.

This result ensures that identical team policies resulting from
the solution of the equivalent zero-sum coordinator game are still
n-optimal for the original max-min optimization problem in (4).
From Theorem 3.3 we can further show that the performance of
the optimal identical policy learned from the �nite population ZS-
MFTG remains within an n-bound of the identical policies derived
from the optimal coordinator game.

T������ 3.4. The value of the optimal identical Blue team policy
q⇤�nite obtained from the �nite population game is within n of the
value of the optimal identical Blue team policy q⇤ obtained from the
equivalent zero-sum coordinator game. Formally, for all joint states
x#1 and y#2 ,

min
k#2

�# ,q⇤�nite,k
#2

(x#1 , y#2 ) �min
k#2

�# ,q⇤,k#2
(x#1 , y#2 )  n, (8)

where n = O(1/
p
# ) and # = min{#1,#2}.

The �rst �gure depicts the individual agents’ local positions,
with the target marked by the green colored cell. The subsequent
�gures illustrate the state distributions `#1

C and a#2
C of both teams,

which constitute the common information available to the agents of
both teams. The agents interact based on weakly-coupled dynamics,
which depend only on `#1

C and a#2
C as described in (2). In this typical

scenario of an MFTG, each agent takes its action after observing its
own local position and the common (i.e., mean-�eld) information,
in order to achieve its own team’s objective.

4 MEAN-FIELD MULTI-AGENT PROXIMAL
POLICY OPTIMIZATION

Motivated by Theorem 3.3, we present an algorithm to learn the
optimal identical team policy. We build our algorithm based on the
proximal policy optimization (PPO) framework due to its simplicity
and e�ectiveness. While PPO has shown promising performance
in cooperative tasks including mean-�eld control problems [2, 26],
its application in mixed competitive-collaborative scenarios is less
studied, especially in the MFTG settings. In the sequel, we introduce
our key contribution: the MFTG learning algorithm, which we refer
to as Mean-Field Multi-Agent Proximal Policy Optimization (MF-
MAPPO).

We initialize two pairs of actor-critic networks, one for each
team, deployed to learn the identical policy used by each team (see
Figure 2). Speci�cally, we introduce a minimally-informed critic
network by exploiting the shared mean-�eld information. The key
point to note here is that we only require the common information



for the critic network in order to learn the value function (Propo-
sition 4.1). Furthermore, the private information available to each
agent only individually enters the actor during training. This results
in neural networks that scale well with the number of agents.

4.1 Minimally-Informed Critic
The MF-MAPPO critic network of the Blue team evaluates the
value function +Blue (`,a), which depends only on the common
information, and is independent of the joint agent states and actions.
We use the parameter vector ZBlue to parameterize the critic network
while minimizing the MSE loss

!critic (ZBlue) =
1
|⌫ |

|⌫ |’
:=1

⇣
+Blue (`: ,a: |ZBlue) � '̂Blue,:

⌘2
, (9)

where the optimization is performed over a mini-batch of size
⌫ and '̂Blue,: is the discounted reward-to-go for sample : . The
reward-to-go for sample : obtained at a time step C is computed
using Monte-Carlo roll-outs starting at C until the episode ends,
and is given by '̂Blue,: =

Õ)
C 0=C W

C 0�CAC (`C ,aC ) [22]. Similar learning
rules apply to the Red team critic +Red (`,a |ZRed) with the negative
reward '̂Red,: = �'̂Blue,: due to the zero-sum structure.

The following proposition follows immediately from the expres-
sion of the team reward (5) and the use of identical team policies,
and justi�es the deployment of a minimally-informed critic network
with only the mean-�elds as inputs.

P���������� 4.1. Let `#1
C , and a#2

C denote the EDs of a �nite-
population game obtained from identical Blue and Red team policies
qC 2 �C andkC 2  C , respectively. The team reward structure admits
a critic that depends only on `#1

C and a#2
C . Speci�cally, for each Blue

team agent 8 2 {1, 2, . . . ,#1}, the individual critic value function
+#1,qC
8,C (G8,C , `

#1
C ,a#2

C ) satis�es

+#1,qC
8,C (G8,C , `

#1
C ,a#2

C ) = +#1,qC

Blue,C (`
#1
C ,a#2

C ), (10)

where +#1,qC

Blue,C (`C ,aC ) is the team-level critic.

The above proposition extends to the Red team critic network.
Importantly, it reduces the learning problem to one critic network

Figure 2: Overview of the architecture of MF-MAPPO.

per team. Speci�cally, the shared team reward structure along with
the assumption of homogeneous agents in each team enables us to
evaluate the performance of a team’s agent using the minimally-
informed critic—even if the individual agent has additional local
observations such as their actions and private states.

4.2 Shared-Team Actor
We consider a single-actor network for each team to learn the iden-
tical team policies. According to [4], identical policies derived from
an equivalent coordinator game can approximate team behaviors
induced by non-identical ones. A single coordinator policy corre-
sponds to the probability distribution over actions for each state,
conditioned on a given mean-�eld. As a result, its dimensional-
ity scales with the joint state-action space, leading to substantial
computational overhead and degraded empirical performance of
the policy network. Notably, DDPG-MFTG adopts this formulation,
but, as demonstrated later in the numerical examples section, its
performance is suboptimal.

Furthermore, while the coordinator game serves as a valuable
theoretical construct, we found it more practical and computation-
ally e�cient to learn �nite-population local identical policies in
place of coordinator policies. These policies continue to respect the
underlying mean-�eld information-sharing structure, while signi�-
cantly reducing complexity and improving tractability in practice.
Theorem 3.4 ensures performance guarantees.

The actor network maximizes a PPO-based objective with an
entropy term to encourage exploration [7, 17], which decays during
training as teams learn reward-maximizing policies. It has also been
shown in the mean-�eld game literature that entropy regularization
stabilizes the learning process [3, 5]. Since the agents are permu-
tation invariant and an identical policy is being learned for each
team, a single bu�er per team su�ces for storing observations and
actions, thereby reducing memory overhead and simplifying the
experience collection pipeline.

The PPO-based objective function of the Blue actor is given by:

!(\Blue) =
1
|⌫ |

|⌫ |’
:=1

h
min

⇣
6: (\Blue)�: , clip[1�n,1+n ] (6: (\Blue))�:

⌘

+ l( (q\Blue (G: , `: , a: ))
i
, (11)

where,

6(\ ) =
q\ (D |G, `,a)

q\old (D |G, `,a)
,

and�: is the generalized advantage function estimate function [16].
The tunable parameter l weighs the contribution of the entropy
term, which is given by

(
�
q\ (G, `,a)

�
= �ED⇠U

"’
D

q\ (D |G, `,a) logq\ (D |G, `,a)

#
.

Wedecayl as training progresses. A similar learning rule is used for
the Red team actor network. Algorithm 1 presents the pseudo-code
of the MF-MAPPO algorithm.



Algorithm 1Mean-Field Multi-Agent Proximal Policy Optimiza-
tion (MF-MAPPO)
Initialize: NN parameters {\Blue, ZBlue} and {\Red, ZRed}; step
size sequences {U<} and {V<}; entropy decay sequence {l<}

for 8 = 1, 2, . . . do
(q\old

Blue
,k\old

Red
)  (q\Blue ,k\Red )

for C = 0, 1, . . . ,)rollout do
Sample joint actions
D8,C ⇠ q\old

Blue
(G8,C , `

#1
C ,a#2

C ), E 9,C ⇠ k\old
Red

(~ 9,C , `
#1
C ,a#2

C )

Step environment according to kernels (5C ,6C )
Collect samples (x#1

C+1, y
#2
C+1, `

#1
C+1,a

#2
C+1, u

#1
C , v#2

C , AC )
end for
for  epochs do

Update {\Blue, ZBlue} and {\Red, ZRed} using (9-11)
end for

end for
Return: (q\Blue ,k\Red )

4.3 Scalability of MF-MAPPO
We further demonstrate the scalability of MF-MAPPO as a direct
consequence of Theorem 3.3, by showing that, under certain condi-
tions, the learned team policies generalize to varying population
sizes (#̃1, #̃2) while maintaining performance guarantees.

R����� 1. Let G1 denote the �nite-population game where the
agents utilize the identical team policies q⇤C and k⇤C derived from
the equivalent, in�nite-population, zero-sum coordinator game, and
let the �nite-population game G2 with the same state-action space,
dynamics, and rewards, but with population sizes #̃1 and #̃2 such
that #̃1/#̃2 = #1/#2 and min(#̃1, #̃2) � min(#1,#2). Then, the
policies q⇤C andk⇤C remain n-optimal for the game G2.

Remark 1 describes policies from the equivalent coordinator
game. Empirically, we show that identical team policies from the
�nite-population ZS-MFTG (Theorem 3.4) yield similar results. This
allows MF-MAPPO to be trained on a smaller population and de-
ployed to larger teams without additional tuning, signi�cantly re-
ducing computational costs while maintaining performance consis-
tency and generalizability across di�erent population sizes.

5 NUMERICAL EXPERIMENTS
In this section, we present several large-population scenarios to
demonstrate the e�cacy of MF-MAPPO. The �rst two scenarios are
mean-�eld extensions of the rock-paper-scissors game [14] with
di�erent action spaces. For these examples, we can analytically com-
pute the mean-�eld trajectory induced by the equilibrium/optimal
policies, and thus use these scenarios to validate the optimality
of MF-MAPPO. We then present a more complex battle�eld sce-
nario where the Blue and Red teams play an attack-defense game
as shown in Figure 1. This scenario has higher (�nite) dimensional
state and action spaces and the teams are required to learn more
complex collective behaviors.

5.1 Rock-Paper-Scissors (RPS)
We �rst extend the two-player Rock-Paper-Scissors (RPS) game [14]
to a game played between two populations. The state space of
each individual agent is S = {R,P,S}, representing rock, paper,
and scissors, respectively. Let `,a 2 P(S) denote the EDs for the
Blue and Red teams. Following the mean-�eld sharing information
structure, an agent observes its local state and the EDs of both teams.
The action space,A = {CW, CCW, Stay}, allows agents to either move
clockwise, counter-clockwise, or remain idle, respectively.

We assume deterministic transitions, where each action leads to
a unique next state deterministically. For example, if an agent at R
takes action CW, it will deterministically end in state P, as shown in
Figure 3. At each time step C , the Blue team receives a team reward
AC (`C ,aC ) = `TC�aC where � is the standard RPS payo� matrix given
by� = [0,�1, 1; 1, 0,�1;�1, 1, 0]. We let the Blue teammaximize the
expected cumulative reward while the Red team minimizes it. The
Nash equilibrium for this population-based RPS game is the uniform
population distribution [1/3, 1/3, 1/3] over the 3 states [13, 14].

We compare MF-MAPPO with DDPG-MFTG [19] based on the
training time, average test rewards and attainment of the computed
Nash distributions for #1 = #2 = 1, 000 agents. A key distinc-
tion between the two algorithms lies in their design philosophy:
DDPG-MFTG relies on a mean-�eld oracle that provides the next
mean-�eld given the current team policy—an object that exists only
in the in�nite population limit and cannot be directly simulated. In
contrast, MF-MAPPO is trained directly within a simulated �nite-
population environment. DDPG-MFTG introduces “central players”
that observe mean-�eld distributions and output deterministic local
policies (akin to the role of the coordinator) via a Q-function, follow-
ing the standard DDPG architecture. Crucially, in DDPG-MFTG, the
input to the Q-function for a given team consists of the mean-�eld
information of all teams, along with only the local policy of the
team itself. This contrasts with multi-agent extensions of DDPG
(e.g., MADDPG), which also incorporates local policy information
of other teams.

Furthermore, the DDPG-MFTG policy is updated at every time
step post-exploration without any explicit clipping or regulariza-
tion mechanisms to constrain policy updates. This lack of stabi-
lization—combined with the high computational complexity and
limited inter-team policy awareness—contributes to the algorithm’s
training instability and poor generalization, especially in complex
environments as we discuss below.

We exclude MADDPG [11] from our comparison, as it scales
poorly to hundreds or thousands of agents due to its reliance on all

Figure 3: States and actions for RPS and cRPS.



Figure 4: Training reward curves for RPS and cRPS.

Table 1: Performance Comparison for RPS

Approach Training Time Average Reward NE Attained?
MF-MAPPO 5min 17s 0.0 3
DDPG-MFTG 1min 34s 0.334 7

Figure 5: ED trajectories induced by learned team policies on
the state distribution simplex. Mean trajectories are averaged
based on the 150 runs from �xed initialization `C=0 = [1, 0, 0]T
and aC=0 = [0, 1, 0]T; #1 = #2 = 1, 000.

agents’ local and global observations and actions as inputs to its
critic networks.

From the learning curves in Figure 4 one can see that the DDPG-
MFTG algorithm failed to converge to the analytical game value of
zero, whileMF-MAPPO almost immediately attained the Nash game
value. However, as shown in Table 1, MF-MAPPO does take slightly
longer to train since, unlike DDPG-MFTG, since MF-MAPPO avoids
mini-batch training, following [26].

We tested the learned policy with a �xed initial distribution
`C=0 = [1, 0, 0]T and aC=0 = [0, 1, 0]T, and the resulting trajectories
are visualized in Figure 5. All simulations were run for 150 instances.
The trajectories of the Blue and Red team ED are depicted in cyan
and pink, respectively, alongside the mean trajectory. The random-
ness in these trajectories arises from the �nite-population approx-
imation under a stochastic optimal policy, resulting in stochastic
EDs. As shown in Figures 4 and 5, DDPG-MFTG diverges from the
Nash equilibrium whereas MF-MAPPO converges immediately.

5.2 Constrained Rock-Paper-Scissors (cRPS)
We now consider a non-trivial modi�cation to the RPS problem by
restricting the action space toA = {CW, Stay}. As shown in Figure 3,
with this restricted action space, the teams cannot immediately
achieve their desired uniform distribution and need to strategically
plan for the intermediate distributions before reaching the desired
target uniform distribution. We again consider the �xed initial
distributions `C=0 = [1, 0, 0]T and aC=0 = [0, 1, 0]T. One may obtain

Figure 6: 150 initializations (cyan/pink) of `C=0 = [1, 0, 0]T and
aC=0 = [0, 1, 0]T on a 3D simplex for cRPS for #1 = #2 = 1, 000.

analytically the conditions for the optimal trajectories of the cRPS
game for these initial conditions.

P���������� 5.1. With initial conditions `C=0 = [1, 0, 0]T and
aC=0 = [0, 1, 0]T, all mean-�eld optimal trajectories satisfy `⇤C = a⇤C =
[
1
3 ,

1
3 ,

1
3 ]

T for all C � 2, and `⇤1 = [0, 1 � [,[]T where [ 2 [
1
3 ,

2
3 ] and

a⇤1 = [0, 23 ,
1
3 ]

T. Furthermore, the unique game value is given by � 1
3 .

Figure 6 shows the trajectories over ten time steps induced by
the team policies learned by MF-MAPPO and DDPG-MFTG. Using
MF-MAPPO, the teams successfully reach the uniform distribution
from the initial condition in Proposition 5.1, as shown in Figure 6,
while the DDPG-MFTG’s trajectories diverge. For MF-MAPPO, the
teams follow the optimal trajectory at C = 1, and the target optimal
distribution is reached within three to four time steps. The transient
time can be attributed to the �nite population approximation and
the entropy term in the optimization problem. Despite this, the
Blue team’s game value after training (-0.331) closely matches the
theoretical value �1/3. Figure 7 shows trajectories for various pop-
ulation sizes using identical policies trained on #1 = #2 = 1, 000
with MF-MAPPO. As the population size increases, the trajecto-
ries exhibit reduced noise and variance while maintaining strong
performance, consistent with the scalability result in Remark 1.

Table 2 highlights the training times between MF-MAPPO and
DDPG-MFTG for the same number of episodes. DDPG-MFTG up-
dates its networks at every time step, causing its computational
overhead to scale with the episode length, whereas MF-MAPPO
updates every )rollout steps independently of the episode length.
Consequently, DDPG-MFTG trains signi�cantly slower on cRPS
despite using mini-batch updates.

These experiments show that MF-MAPPO learns stable policies
that are consistent with the theoretical predictions, while DDPG-
MFTG, despite its successes in [19], struggles to stabilize in these
simple ZS-MFTGs.

Table 2: Performance Comparison for cRPS

Approach Training Time Average Reward NE Attained?

MF-MAPPO 2h 17min 15s -0.331 3
DDPG-MFTG 60h 49min 41s 3.774 7



Figure 7: Deploying MF-MAPPO trained on #1 = #2 = 1, 000
to varying team sizes (150 trajectories) with the same initial-
ization.

5.3 Battle�eld Game
To fully test the capability of MF-MAPPO on a more complex sce-
nario, we propose a battle�eld game where an individual agent’s
dynamics is highly coupled with both teams’ distributions.

We consider a large-scale two-team (Blue and Red) ZS-MFTG on
an = ⇥= grid world, modeling a target capture-type o�ense/defense
scenario. The Blue agents aim to reach target locations without
being deactivated, while the Red agents must learn to guard these
targets. Each team can deactivate its opponents in a cell by main-
taining numerical advantage over the opposing team at that cell. In
all battle�eld illustrations, the targets are shown in lilac color and
the obstacles are shown in black; the bottom left cell is [0, 0].

5.3.1 Problem Setup and Objective. The state of the 8C⌘ Blue agent
is de�ned as the pair G8 = (?G8 , B

G
8 ) where ?

G
8 2 Sposition denotes

the position of the agent in the grid world and BG8 2 Sstatus = {0, 1}
de�nes the status of the agent: 0 being inactive and 1 being active.
Similarly, we de�ne the state of the Red agent as ~8 = (?~8 , B

~
8 ).

The state spaces for the Blue and Red teams are denoted by X =
Y = Sposition ⇥ Sstatus, respectively. The mean-�elds of the Blue
(`) and Red (a) teams are distributions over the joint position and
status space, i.e., `,a 2 P(Sposition ⇥Sstatus). The action spaces are
given by U = V = {Up, Down, Left, Right, Stay} for both teams,
representing discrete movements in the grid world. The learned
identical team policy assigns actions based on an agent’s local
position and status, as well as the observed mean-�elds of both
teams.

An agent can be deactivated by the opponent with a nonzero
probability if the opponent’s ED at the agent’s location exceeds
that of the agent’s own team, which we refer to as the numerical
advantage. The total transition probability from state (?, B) to state
(?0, B0) by taking an action 0 is given by

P
�
(?0, B0) | (?, B),0, `,a

�
= P

�
?0 | (?0, B0),0

�
P
�
B0 | (?, B), `,a

�
,

where the �rst term on the right-hand side corresponds to the
deterministic position transition when the agent is active. The

Figure 8: Average test rewards of MF-MAPPO vs. DDPG-
MFTG on a 4x4 grid world for 100 random initializations.

second term corresponding to the status transition is given by

P
�
0 | (?, 1), `,a

�
= clip[0,1]

�
UG (a (?) � ` (?))

�
,

P
�
1 | (?, 1), `,a

�
= 1 � P

�
0 | (?, 1), `,a

�
,

where a (?) � ` (?) is the Red team’s numerical advantage over the
Blue team at ? , and UG is a tuning parameter to control the Red
team’s deactivation power. We can formulate a similar expression
for the deactivation probability of the Red team based on the Blue
team’s numerical advantage ` (?) � a (?).

These dynamics incentivize both teams to aggregate, i.e., to mini-
mize the numerical advantage of the opponent team and ultimately
reduce the risk of being deactivated. The Blue team’s reward de-
pends on the fraction of agents active and at the target, and Red’s
reward follows from the zero-sum structure. To avoid degeneracy,
the Red agents are not allowed to enter the target.

5.3.2 Results and Discussion. We conducted several experiments
on various grid world maps with di�erent target and obstacle lay-
outs. In our experiments, we trained with #1 = #2 = 100 agents
and experimented with di�erent initial distributions. Additional
results are presented in the supplementary material.

Map 1: A 4 ⇥ 4 grid features a target partially obstructed by a
diagonal obstacle (Figures 9-10). The Red team must position itself
along left and the right corridors (cells [0, 2] and [1, 3]) to hinder
Blue team’s advance. We compare MF-MAPPO and DDPG-MFTG
by pitting them against each other in both o�ensive and defensive
roles. As shown in Figure 8, MF-MAPPO consistently outperforms
DDPG-MFTG across various initial positions, achieving up to 10⇥
higher rewards when attacking (Figures 8(a) and 8(c)). While both
methods perform similarly in defense, visualizations reveal that
DDPG-MFTG agents often fail to learn e�ective strategies, instead
remaining stationary and aiming for a zero-reward outcome—an
exploitable weakness.

Figure 9 compares the two algorithms against the baseline de-
fending team. MF-MAPPO Blue agents exhibit coordinated maneu-
vering, forming coalitions to reach the target (a), whereas DDPG-
MFTG Blue agents (b) show limited coordination, with only nearby
agents reaching the target and distant agents failing to engage.
Figure 9(c) represents MF-MAPPO vs. MF-MAPPO to illustrate the
goal strategies and expected behavior.

We next evaluated MF-MAPPO’s performance as the Red defend-
ing team against the DDPG-MFTG Blue team (Figure 10). Due to
the agents’ initial positions, the target entryway near [0, 2] remains
unguarded, requiring the Red team to mobilize its agents to defend



Figure 9: a. MF-MAPPO Blue vs. DDPG-MFTG Red; b. DDPG-
MFTG Blue vs. DDPG-MFTG Red; c. MF-MAPPO Blue vs. MF-
MAPPO Red.

the area. MF-MAPPO Red agents successfully cover the entryway
and deactivate several Blue attackers (a), whereas the DDPG-MFTG
Red agents (b) fail to secure the second target. Moreover, (b) high-
lights that DDPG-MFTG Blue agents do not aggressively pursue
the target, further illustrating their tendency to passively seek zero
reward outcomes rather than take goal-directed actions, unlike (c).

Figure 10: a. MF-MAPPO Red vs. DDPG-MFTG Blue; b. DDPG-
MFTG Red vs. DDPG-MFTG Blue; c. MF-MAPPO Red vs. MF-
MAPPO Blue.

Map 2: We design a more complex 8 ⇥ 8 grid with two targets
(Figures 11 and 12). The Red team now faces a dilemma in determin-
ing which target to defend, while the Blue team must exploit this
ambiguity to its advantage. Due to DDPG-MFTG’s high computa-
tional cost—which scales with the joint state-action space—and its
high network update frequency, it is excluded from our analysis. In
the absence of other baselines for such large scale complex games,
we only qualitatively assess MF-MAPPO’s performance.

In Figure 11, the Red team is concentrated at one cell, while
the Blue team is split: 30% at cell [1, 1] and the rest at cell [6, 6].
The Red team proceeds to deactivate the smaller group of Blue
agents due to its numerical advantage. Upon seeing both the Blue
groups advance towards the upper target, the Red team changes its
trajectory in order to block the target as seen in (c). The Blue team
then intelligently shifts toward the lower target, as assembling its
forces there is more feasible than at the upper target, where the
Red team maintains a strong presence (Figures 11(d)-11(g)).

In Figure 12, the Blue team is evenly distributed across four cells,
while the Red team is concentrated at [3, 3]. Blue agents move

Figure 11: Red is concentrated; 30% Blue are at [1, 1] and the
rest are at [6, 6].
toward the nearest target, demonstrating heterogeneous behav-
ior despite operating under an identical policy—highlighting the
strength of the mean-�eld approximation. Similarly, the Red team
also strategically divides to defend both targets its identical policy.
Due to policy stochasticity and �nite population e�ects, the split is
uneven, prompting the upper Blue subgroup to redirect toward the
lower target. This allows both lower Blue subgroups to reach their
objective. The Red team quickly reallocates its agents in response
and ultimately uses its numerical advantage to deactivate several
Blue agents (Figure 12(h)).

Figure 12: Blue is evenly split, Red is concentrated.

6 CONCLUSION
We introduced MF-MAPPO, a novel MARL algorithm for large-
population competitive team games, leveraging �nite mean-�eld ap-
proximation. Our design—featuring aminimally-informed critic and
a shared team actor—achieves scalability without sacri�cing per-
formance. We evaluated MF-MAPPO against baselines like DDPG-
MFTG on standard and constrained RPS, as well as a new MFTG
battle�eld scenario. Despite shared team policies, heterogeneous
sub-population behaviors emerged, showing that mean-�eld ap-
proximations do not signi�cantly limit performance. The battle�eld
testbed provides a rigorous benchmark for future research, sup-
porting evaluations on accumulated rewards, sample e�ciency,
and computational complexity. A current limitation is that input
dimensionality grows with the state space, which we aim to ad-
dress through dimensionality reduction techniques (e.g., kernel
embeddings).
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