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ABSTRACT
Contemporary machine learning paradigm excels in statistical data
analysis, solving problems that classical AI couldn’t. However, it
faces key limitations, such as a lack of integration with planning,
incomprehensible internal structure, and inability to learn continu-
ally. We present initial design for an AI system, Agential AI (AAI), in
principle operating independently or on top of statistical methods,
that overcomes all these issues. AAI’s core is a learning method
that models temporal dynamics with guarantees of completeness,
minimality, and continual learning. It integrates this with a be-
havior algorithm that plans on a learned model and encapsulates
high-level behavior patterns. Preliminary experiments on a simple
environment show AAI’s effectiveness and potential.

KEYWORDS
Continual learning, Planning, Behavior encapsulation

1 INTRODUCTION
The current machine learning (ML) paradigm uses continuous repre-
sentations to approximate environmental structures through fixed
internal architectures like neural networks (NNs). This approach
has effectively addressed numerous challenges once considered
among the toughest in AI, including vision [13], language process-
ing [33], and complex behavior [17]. However, as these problems
are solved, important limitations related to the methods of solving
them and their practical integration into larger systems start to
receive more attention [4, 16, 19, 32]. In particular; these models,
heavily overparameterized with finite expressive potential, adapt
by tuning continuous parameters rather than learning the struc-
ture topologically. Consequently, information is embedded in a
distributed manner, leading to several important issues that are
widely regarded as core limitations of machine learning (and NNs,
its current dominant paradigm) - most notably the incapability of
continual learning and information reuse, incomprehensibility and
non-designability of the internal structure, and difficulty integrating
learned information with deliberative behavior.

These issues originate from the shared limitation of approxi-
mating environmental structures with fixed models, rather than
learning them topologically. They can be addressed collectively and
without limitations of individual subfields tackling them separately,
through a different design philosophy that tackles the problem from
the ground up. To that end, we present the initial design of a system
called Agential AI (AAI). The system consists of three components:
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• Modelleyen, an alternative learning mechanism exemplifying
what we call a varsel mechanism, that captures the structure
of the environment topologically in a discrete network with-
out using gradients, enabling continual learning without
destructive adaptation, with no task boundaries or replay,1
• A planning algorithm that executes goal-directed actions
based on a model generated by Modelleyen,
• A behavior encapsulationmechanism, currently demonstrated
independently of agent operation, that decomposes behavior
patterns produced by the planner into arbitrary hierarchical
structures with autonomously detected subgoals.

We detail these components, explain how they overcome mul-
tiple major limitations of contemporary ML (detailed in the next
section), and demonstrate their proof-of-principle operation on a
simple test environment.

2 RELATEDWORK
Common Limitations of ML Systems Two important core limita-
tions of current ML systems are the inability of continual learning
and incomprehensibility of internal structure; often tackled in iso-
lation [10, 12, 14, 26, 31, 34]. These methods don’t fully resolve the
fundamental limitations of NNs but aim to mitigate their effects.
For example, many continual learning (CL) solutions rely on as-
sumptions that simplify the problem (e.g. externally defined task
boundaries [12, 26] or storage and replay of past observations [1])
or only bias learning towards past tasks without ensuring true CL
[14]. Similarly, Explainable AI methods [31] attempt to provide
post-hoc explanations for the operation of neural networks, yet
they fail to address the fundamental incomprehensibility of their
internal structures, leaving them far from being truly engineerable.
Furthermore, the challenge of explainability is often approached
independently of the continual learning problem, rather than being
seen as stemming from a shared underlying issue. Even studies that
consider explainability within the context of CL tend to either pro-
pose distinct, sequentially applicable mechanisms for each problem
separately [25] or focus on additional explainability challenges that
arise when certain continual learning methods are used [5, 27].

Deliberative Behavior Planning is a well-established area of AI
research [9], offering advantages over reinforcement learning (RL)
for reactive behavior [2], as it is more precise and doesn’t require
relearning for new goals. Traditional planning methods generally
do not include environment model learning, and even those that do
so to some degree face significant limitations. For instance, [22] op-
erate under restrictive assumptions: action preconditions are linear

1An earlier version of Modelleyen has been presented in [7].



inequalities over numeric state variables, effects are defined by lin-
ear combinations of these variables, and the variables are predefined.
Analogous limitations can be found in other works [28, 29]. Our
modeling approach is not constrained by such assumptions. While
model-based RL [20, 21] partially addresses deliberative behavior
through experience-driven learning, it suffers from limitations due
to its non-structured representation of environments. This makes it
challenging to represent alternative pathways to goals and conduct
goal-oriented backward searches, often relying on random state
sampling [11]. Our method’s planner explicitly represents alterna-
tive pathways using a learned model, enabling precise goal-directed
behavior without the need for next-state sampling.

Behavior Decomposition A longstanding objective within the
learning agents community has been to automatically break down
behavior into distinct subunits, which is the primary motivation
behind the subfield of Hierarchical Reinforcement Learning (HRL)
[23]. However, this goal has yet to be achieved: current HRL meth-
ods produce rigid hierarchies that require predefining the structure
in some form, with no exceptions known to us. Additionally, there
is no existing capability for HRL-learned policies to be divided
into multiple subpolicies, which is a fundamental requirement for
flexible hierarchical structures. In this work, we present an initial
demonstration of a behavior encapsulation mechanism (currently
independent of the agent’s operation) that can generate arbitrary
hierarchical decompositions of behaviors designed by the planner.
This mechanism can identify relevant subpolicies, along with their
internal preconditions and subgoals, without any prior definitions,
thus achieving the goal of HRL in a different context.

Summary Table 1 summarizes the previous discussion. As men-
tioned earlier, these issues arise from the shared limitation of ap-
proximating environmental structures with fixed models, rather
than learning them structurally. Therefore, once this fundamental
challenge is addressed, the issues can be tackled collectively. This
is the central goal of this work. 2

3 MODELLEYEN
Modelleyen is designed to model sequential observations from an
environment, but can be applied to any prediction task. It learns
the environment’s structure with minimal exposure, enabling infor-
mation reuse and continual learning while maintaining consistency
with past experiences. At the core of our method is a local varia-
tion and selection process - an important fundamental property of
biological systems that has not found their way explicitly into AI
methods, whose importance in the generation of biological struc-
tures and facilitation of their further evolution [8, 18, 30], including
in the brain [6, 18] has recently been particularly appreciated. As it
will be clear, this mechanism essential to the realization of contin-
ual learning and structured environment modelling, which in turn
leads to all the other capabilities.

Below, we outline Modelleyen’s core mechanism. We note in
advance that the current version operates within a discrete state
space and only accounts for immediate event succession without
long-term relationship modeling (see Section 8 for a discussion of
these points). Due to space limitations, we provide only an overview

2Our approach to modelling is also possibly applicable to Bayesian structure learning
[15]; although this is not our primary motivation.

of the key definitions, basic learning mechanism, and core continual
learning properties. For a full description, the reader is referred to
Appendix A.1, and Algorithms 1 and 2.

Definition 1. (State Variable - SV) A state variable 𝑋 is a unit in
our system whose state, 𝑆𝑋 , can take values 1 (active), -1 (inactive),
or 0 (unobserved/undefined depending on context).

SVs can be interpreted as boolean variables with additional pos-
sibility to take an additional "unobserved" value. The integers as-
signed for states are only for notation and not for algebraic opera-
tion. The following are subtypes of SVs:

Definition 2. (Base SV - BSV and Dynamics SV - DSV) A BSV
𝑋 is an SV whose values are provided externally each timestep and
whose state is limited by 𝑆𝑋 ∈ {−1, 1}. Each BSV comes with two
DSVs, 𝑋𝐴 and 𝑋𝐷 , that represent its activation and deactivation at
current step (𝑡) compared to previous timestep respectively; where
𝑆𝑋𝐴

= 1 if and only if 𝑆𝑋 (𝑡 − 1) = −1 ∧ 𝑆𝑋 (𝑡) = 1, and 𝑆𝑋𝐷
= 1 if

and only if 𝑆𝑋 (𝑡 − 1) = 1 ∧ 𝑆𝑋 (𝑡) = −1, and persisting as long as no
new event in BSVs are observed.

Definition 3. (Conditioning SV - CSV) A CSV 𝐶 is a type of SV
with mutable sets of positive sources 𝑋𝑃 , negative sources 𝑋𝑁 , and
conditioning targets 𝑌 . Positive and negative sources are BSVs and
DSVs, while targets can be DSVs or other CSVs. The sources of 𝐶 are
considered "satisfied" if all positive sources are active and all negative
sources are not active. If sources are satisfied, 𝑆𝐶 = 1 if sources are sat-
isfied and 𝑆𝑌 ∈ {0, 1}, ∀𝑥 ∈ 𝑌 (targets are active); 𝑆𝐶 = −1 if sources
are satisfied and 𝑆𝑌 ∈ {0,−1}, ∀𝑥 ∈ 𝑌 (targets are inactive), and
𝑆𝐶 = 0 otherwise. Additionally, each CSV has a "unconditionality"
flag, which indicates if the CSV has, in the past, been always observed
active when sources were satisfied ("unconditional"), was never ob-
served active without a predictive explanation ("conditional"), or was
sometimes observed active without a predictive explanation ("possi-
bly conditional"), the latter representing uncertainty in a qualitative
manner.

BSVs are essentially environment observations, while DSVs rep-
resent their changes.3 CSVs model the presence or absence of a
relationship between a learned condition (sources) and its effect
(active target states), indicated by the CSV being active (1) or in-
active (-1). Figure 8 in Appendix shows these SV types and their
connections. Note that CSVs are not feedforward computational
units; they represent the relationship between sources and targets -
states of their targets are set independently of the CSV, unlike feed-
forward units that determine target states based on source states.
CSVs partially function as feedforward units only when used for
prediction of alternative outcomes.

The learning process proceeds step-by-step, without incorpo-
rating an aggregate evaluation of multiple observational samples
gathered from the environment, nor relying on iterative, repeated
passes over a batch of data—distinct from traditional approaches
such as deep RL. Initially, the model includes only BSVs and their
DSVs, with no CSVs. At each step, Modelleyen seeks to explain the
observed states of CSVs and DSVs in the previous timestep (mod-
eling BSVs indirectly via DSVs). It does so by creating new CSVs
3In our implementation we also use BSVs to represent actions taken by the agent in
the previous step. Differently from environment observations, the actions do not have
associated DSVs, since their activation and deactivation is in agent’s control.



Table 1: Main aims of current learning agents research, representative subfields tackling these aims, and inherent limitations
of their approaches.

Aim Continual learning Deliberative behavior Behavior decomposition Understandability-
controllability

Subfield Various Model based RL Hierarchical RL Explainable AI
Limits Requires either task bound-

aries or reexposure to past
samples

Imprecise deliberation based
on future-state sampling

Rigid prespecified hierarchy,
subpolicies are not decompos-
able

Post-hoc, keeps incompre-
hensible internal structure

to account for unexplained DSVs and CSVs. These retrospective
explanations captured by CSVs become predictions for potential
outcomes in the next timestep. Learning capability of Modelleyen
comes from the operations on CSVs - their formation, and the modifi-
cation of their positive and negative sources; summarized as follows
(detailed on Algorithms 1 and 2):

Initial formation: Figure 1b. At each step, if there are active DSVs
or CSVs without an explanation (an active conditioner or an uncon-
ditionality flag, see Appendix), a new CSV is generated to explain
them. Initially, the CSV has no negative sources (𝑋𝑁 = ∅) and in-
cludes all active BSVs and DSVs at that timestep as positive sources
(𝑋𝑃 ). No additional positive sources can be added to the CSV.

Negative connections formation: Figure 1d. At the first instance
where a CSV’s sources are satisfied but its state is inactive, the
CSV receives all active DSVs and BSVs at that timestep as nega-
tive sources (𝑋𝑁 ), similar to previous step. No additional negative
sources are added thereafter.4

Refinements: Figures 1c and 1e. When a CSV’s state is determined
as 1 with at least one active positive source and active targets, we
remove nonactive positive sources (𝑥 ∈ 𝑋𝑃 : 𝑆𝑋 ≠ 1) from 𝑋𝑃 and
active negative sources (𝑥 ∈ 𝑋𝑁 : 𝑆𝑋 = 1) from𝑋𝑁 . When the state
is 0, with at least one active positive source, inactive targets, and
at least one active negative source, we remove nonactive negative
sources (𝑥 ∈ 𝑋𝑁 : 𝑆𝑋 ≠ 1) from 𝑋𝑁 .

Intuitively, a CSV starts by being connected to all active SVs at
formation, representing a comprehensive hypothesis of relation-
ships. These relationships are then refined based on observations
where some connections are deemed unnecessary, ensuring the
CSV remains consistent with past observations locally. This refine-
ment is central to Modelleyen’s continual learning ability, evident
from its lowest organizational level of CSVs, as formalized of the
following property.

Theorem 1. Let 𝑦𝑖 be an instance that includes the previous states
of all the positive and negative sources of a CSV 𝐶 and the current
states of all its conditioning targets. Then, if 𝐶 undergoes any modifi-
cation as a result of encounter with an instance 𝑦1, its state in reponse
to any past instance 𝑦0 is not altered by this modification; as long as
its set of targets remain identical and 𝐶 does not undergo negative
sources formation (either because inactive state is not observed or
because it has already undergone it).5 For the proof, see Appendix A.3.

4This process is separate from initial sources’ formation to avoid creating exhaustive
negative connections where unnecessary. Otherwise, a negative connection would be
made with everything inactive during CSV creation, which, while accurate, would be
overly exhaustive and unnecessary for most negative sources.
5The requirement for identicality of targets in this theorem is only to account for the
fact that heterogeneous targets result in duplication of CSVs - see the Appendix for

Theorem 1 is exemplified in Figure 1: In 1b, after elimination of
𝑋1 as a positive source, the earlier exposure of 𝑋0, 𝑋1 → 𝑌 still
results in a state of activity in 𝐶0, and likewise for 𝑋2 & 𝑋3. With
this property, we know that the state of a CSV in response to any
past encounter is not altered except possibly for initial negative
sources formation (happening only once per CSV), hence realizing
continual learning without destructive adaptation in Modelleyen
inherently and from the lowest level of organization.

A CSV can condition/predict not only the activation of direct
environmental dynamics (DSVs), but also possibly the activation
of other CSVs. This capability enables the model to become more
complex upstream, allowing for the representation of arbitrarily
complex logical relations in a structurally minimal way, without
requiring any a priori knowledge of the existence of such relations.
(As a result, it is not constrained by the assumptions such as those
in [22] discussed in the introduction). This formation of upstream
conditioning pathways is exemplified on Figure 2, continuing our
example from Figure 1. The processes of refinements, negative
sources formations, and even further upstream conditioning are
identical regardless of what the target of a CSV is.

Additionally, we quantify the statistical significance of relation-
ships between each CSV and their targets - this prevents excessively
large models and instability in environments with numerous ob-
servations and spurious relationships, expected to be especially
important when scaling to higher-dimensional environments. For
this purpose, we use a straightforward metric we called normalized
causal effect (NCE), quantifying the amount of increase in proba-
bility of incidence of 𝑇 (𝐼 (𝑇 )) that satisfaction of sources of CSV 𝐶

(𝑆𝑆 (𝐶)) causes, normalized by the original probability of incidence:

𝑁𝐶𝐸 =
𝑃 (𝐼 (𝑇 ) |𝑆𝑆 (𝐶)) − 𝑃 (𝐼 (𝑇 ))

𝑃 (𝐼 (𝑇 )) (1)

Details & reasoning behind this mechanism of statistical signifi-
cance tracking are excluded from the main text for brevity can be
found in Appendix A.4.

This learning approach is fundamentally different from methods
like NNs. In Modelleyen, the agent updates its model instantly with
new information at each step, unlike other methods that make in-
cremental adjustments over many steps. This process can be seen
as the agent initially "overfitting" to observations —fully accounting
for them— while gradually refining the model to be as structurally
and explanatorily minimal as possible without contradicting past
experiences. At every stage, the model is as general as necessary

details of this mechanism. The theorem holds when one considers the response of the
duplicated CSVs with respect to the targets assigned to each duplicate as well.



(a) (b)

(c) (d)

(e)

Figure 1: Sample formation of a CSV in a continual man-
ner. The relationship to be modelled is 𝑌 = 𝑋0 𝑎𝑛𝑑 !𝑋2 ("!"
denotes "not"). Black and orange arrows represent positive
and negative sources for CSV 𝐶0 respctively. 𝑋𝑖 can be inter-
preted either as single or grouped SVs. (a) Initial state with
no relation formed between 𝑋0 − 3 and 𝑌 . (b) 𝑋0, 𝑋1 → 𝑌

observed. Positive connections hypothesizing both 𝑋0 & 𝑋1
are required for Y are formed. (c) 𝑋0→ 𝑌 is observed. 𝑋1 is
deduced unnecessary for 𝑌 . (d) 𝑋0, 𝑋2, 𝑋3→!𝑌 observed. 𝑌 is
hypothesized to be suppressed by 𝑋2 and 𝑋3. (e) 𝑋0, 𝑋2→!𝑌
observed. 𝑋3, seen unnecessary for suppression of 𝑌 , refined.
Correct structure learned and is stable from now on.

based on prior exposures, but no more. The more specific represen-
tation (e.g., more sources per CSV) allows for precise generalization
when new observations arise, increasing likelihood of consistency
as sources are refined. This mechanism is central to Modelleyen’s
continual learning capability and reflects a fundamental process in
biological systems, where redundant variations are maintained and
selected as needed [8]. Without knowledge of any prior approach
grounded in these principles, we propose naming such learning
mechanisms —which rely on local, component-level variation and
selection as exemplified by Modelleyen— as varsel mechanisms; and
networks constructed using them as varsel networks. Unlike con-
ventional methods that start with underfitting and progressively
adjust while avoiding overfitting, this concern is irrelevant in varsel
networks, as the necessary level of generalization is inherently built
into the model based on all previous observations.

(a) (b)

Figure 2: Example of upstream conditioning, continuing
from Figure 1. Assume that the unconditionality flag of 𝐶0
is set following an observation that (𝑋0, !𝑋2) did not result
in its activation (see main text). (a) 𝑋0, !𝑋2, 𝑋4, 𝑋5 → 𝑌 ob-
served. 𝐶0 is observed to be active, since 𝑋𝑂, !𝑋2 led to 𝑌 . A
new CSV 𝐶1 is formed & conditions 𝐶0. Note that (𝑋4, 𝑋5)
alone will not predict activation of 𝐶0 if 𝐶0’s sources are not
also active. (b) New conditioners are also subject to the CSV
processes: Here, the source 𝑋5 of 𝐶1 has been refined, and
new conditioners 𝐶2 and 𝐶3 are formed. Multiple condition-
ers represent alternative paths: In this case, 𝐶0 is expected
to be active when sources of either 𝐶1 or 𝐶2 is active. Any
logical function can hence be incorporated in a conditioning
pathway in a minimal and ongoing manner without destroy-
ing past knowledge.

4 PLANNER
We introduce our planner design, an extension on Modelleyen
designed to demonstrate goal-directed planning through backward
tracking from desired goal states to current states.

Preprocessing the model and Group SVs: We first briefly pre-
process a learned model to reduce the number of connections. To
this end, we group the sets of BSVs in our that are either (1) collec-
tively act as positive or negative source of a CSV, or (2) have an event
that is collectively predicted by a CSV. Each such grouping becomes
a constituent of a Group SV (GSV). For example, if a CSV 𝐶0 has
positive sources (𝐵0, 𝐵1, 𝐵2) and predicts deactivation of (𝐵3, 𝐵4);
then two GSVs are created: 𝐺0 = (𝐵0, 𝐵1, 𝐵2), 𝐺2 = (𝐵3, 𝐵4). This
preprocessing stage is only for practical purposes and is not in
principle needed for the operation of the planner, but we think
it is essential for scalable representations of models learned by
Modelleyen in the long run.

Main Process of the planner: Our planner constructs an action
network (AN) based on a model generated by Modelleyen, incorpo-
rating alternative outcomes. AnAN is a dependency graphwith root
nodes representing the current environmental states (current BSV,
GSV, and DSVs), alongwith possible alternative connections (shown
by multiple conditioning links from CSVs) needed to achieve a spec-
ified goal state variable (see Figure 7a example from experiments).
To build this, we use a simple recursive function that generates
the upstream action network for a given node (Figure 3 - see Al-
gorithm 3 in Appendix for details). At each call, the function adds
predecessors for the specified node until it reaches the root nodes
that represent current environmental states. These predecessors



(a) (b)

Figure 3: Illustration step-by-step upstream generation of
action network, operating on different SV types. BX, CX
and GX stand for BSV, CSV and GSV nodes respectively, (A)
for activation, (0) for nonactive state. Black arrows are posi-
tive sources and precondition targets, green arrows are con-
stituent (dashed) and constituency (solid) relations. The node
that is extended at each step is highlighted in red. (a) Step 1.
CSV C0 is opened. For CSVs, their upstream conditioners (C1)
and sources are expanded (G0, B0(A)). (b) Steps 2-4. Each step
opens up one of the sources of previous step. For GSVs (G0),
constituents (B2, B3), constituencies (G1) and precondition
events (G0(A)) are opened. For DSVs (B0(A)), their precon-
dition states (B0(0)) and their conditioners (C2) are opened.
Possible interrelations (e.g. B2 for C1, G0) do not need re-
opening if they already exist.

vary by state variable types based on their model functionality, as
summarized in Figure 3b.

Action Choice: The agent generates an action network each
time it needs to select an action. (While this is computationally
unnecessary—since the agent could reuse a generated AN until it
reaches the goal by tracking its position along the AN—wemaintain
this approach for simplicity.) From the generated AN, the agent
identifies actions that can immediately activate any CSV in the
action model, specifically those whose sources and sources of their
downstream targets do not involve any unactualized BSV states.
The agent then randomly selects one of these actions for the current
step. Since only one action is chosen, the agent can consider the
entire AN including alternative pathways.

Our planner is explicitly goal-directed, identifying a path from
initial states to the goal without needing rewards, although rewards
can help prioritize the search. Unlike methods like model-based
RL, which typically search from initial states to goals via forward-
sampling, The planner considers both initial and goal states, focus-
ing on steps derived from the environment model. The planning
algorithm is a simple search method that unfolds upstream action
networks from the model, as our main aim is to demonstrate the
interface between Modelleyen’s modeling components and general
deliberative behavior without going into extensive detail. Planning
is a well-established field with efficient methods and useful heuris-
tics [9], and once the interface between Modelleyen and planning
is established, implementing more advanced algorithms is straight-
forward.

Finally, we note two visible limitations of the current version of
the planner. First, the generated action networks are exhaustive,
including every possible path to initial states. Second, the current
version does not account for the precise timing of multiple events.
In our experiments, for instance, the RS environment subtype (see

Figure 5) takes longer due to the BSV DO having two pathways
for deactivation, the correct one being the one that deactivates
BSVW as well at the same time. The planner fails to distinguish
between these pathways, leading to some unnecessary loops. These
limitations are not addressed in current framework to keep its
simplicity, since they do not affect our demonstrative use of the
planner to a major degree. They are discussed in Section 8.

4.1 Overview of the Agent’s Operation Flow
In summary, the operation of an agent utilizing Modelleyen and
the planner follows these steps, repeated continuously as the agent
interacts with the environment in an online manner, without the
need for episode division or offline learning periods:

(1) Execute actions and gather observations from environment.
(2) Process the environment’s observations and update themodel

(Modelleyen - Section 3, Algorithms 1 and 2.)
(3) Generate a plan based on the current model and goals, select

an action from the resulting plan (Planner - Sec. 4, Alg. 3.)

5 BEHAVIOR ENCAPSULATION
Modelleyen and our planner design together create a complete
system capable of continual learning and structured goal-directed
behavior. However, the exhaustive action networks produced by the
planner do not exemplify a comprehensible representation, which
is one of our key goals. Additionally, the planner does not fully
leverage this structured representation to address a long-standing
challenge in AI behavior learning: the decomposition of learned
behavior into subunits defined by automatically determined precon-
ditions and consequences in an arbitrary hierarchical manner. To
address this, we introduce a behavior encapsulationmechanism that
operates on the action networks generated by the planner, trans-
forming flat, exhaustive action plans into a hierarchically structured
and comprehensible format.

The action network (AN) produced by the planner contains mul-
tiple alternative pathways. Our first step is to isolate each pathway
into individual alternative action networks by creating copies of the
original network, each including only one of the conditioning alter-
natives for each CSV and DSV. Next, we aim to develop a reduced,
high-level network that captures the reliably observed pathways
across all these alternative ANs (see Figure 4 for an abstract ex-
ample, and Figure 7b for a specific case from our experiments).
The nodes in this new graph represent necessary subgoals for the
current goal, while the encapsulated edges denote the subpolicies
linking their start and end states. We achieve this through a sim-
ple, edge-oriented process that starts with one action network and
refines edges by removing those whose source and target aren’t
connected in other ANs, while linking all relevant predecessors and
successors. This process continues until no further changes occur,
resulting in a minimally structured version.

After generating the high-level network, we isolate the sub-
graphs that connect the subgoal nodes, representing them as alter-
native pathways for the corresponding subpolicies. This process
is done recursively on the internal encapsulated subnetworks by
grouping networks that share at least one common node, continu-
ing until no such groups can be formed. This results in a behavior



Figure 4: Illustrative example for the aim of behavior encap-
sulation process. To the left are two action networks (ANs)
that represent two alternative pathways, split from the uni-
fied AN generated by Planner (node names are placeholders
and can be of any SV type and target effect). We want to
encapsulate the pathways between X and Z. For that; all path-
ways that are reliably present in all (here, both) networks
are identified and a new encapsulated AN (EAN) is formed
with them (right). Each encapsulated edge (dashed) in EAN
includes copies of subnetworks that corresponded to this
pathway in the original AN variants; which can be further
encapsulated in subgroups via a recursive call (for example,
edge (D0,Y) would include two pathways; first one formed
only of E0, the second of C2 and E1). The EAN on right can
be regarded as the subpolicy for realization of Z from X.

representation that, while complex in its extended form, is maxi-
mally structured and comprehensible at each organizational level.
Although this process is computationally intensive, it only needs
to be executed once for each action path, as long as the underlying
model remains unchanged, making the computational complexity
manageable.

Beyond enhancing the comprehensibility of action networks
post-hoc, this encapsulation process can significantly aid agent
behavior. Encapsulated behavioral subunits, (whose delimiters are
not provided to the agent in advance), can be reused when the same
precondition/goal pairs arise.We do not yet perform this integration
of behavior encapsulation with the agent’s ongoing operations, and
present it separately as an illustration of what becomes possible
with AAI.

6 EXPERIMENTAL SETUP
We demonstrate the operation of AAI on a simple test environment,
which is a finite-state machine (FSM) with two cells, each capable
of seven states or inactivity, as shown in Figure 5. The environ-
ment includes three subtypes ("RS", "SG", "NEG"), illustrated by
different colors. This setup was designed to model various types of
temporal successions, such as basic succession, correlated changes,
alternative causes/outcomes, uncertain transitions, and negative
conditons.6 There is also a random variant of the environment
where two additional states that get activated randomly are intro-
duced, in order to test statistical significance filtering mechanisms.

6The environment was vaguely inspired from Multiroom environment in Minigrid [3].
For intuition behind this FSM, see the Appendix.

Figure 5: The environment and its subenvironments that we
test on, essentially a FSM with two cells each of whom can
take one of the states "DO, DC,W, G, SG1, SG2, X" or be empty
("-"). Each state is connected with arrows representing suc-
cession relations between them; filled circles correspond to
multiple alternatives that can result from it. Green, red and
blue portions are "RS", "SG", and "NEG" subtypes respectively
(detailed in text), black portion is included in all subtypes.
In "Complete" variant, all transitions and states are included.
The agent’s goal is to activate state "G" in the first cell, and
optimal actions are indicated by bold transitions. The envi-
ronment has 20 actions, much larger than what is actually
useful, in order to make it difficult to reach goal randomly.

This environment was chosen in order to validate the core opera-
tion of AAI in a simple and understandable setting, which made
in-depth analysis and debug of the design very feasible during
development process. There is no inherent limitation to applying
to more complex environments, akin to those used for testing e.g.
RL algorithms,7 except that the planner implementation should
incorporate the changes needed to make search nonexhaustive (see
Sections 4 and 8). We leave validation on such environments and
changes in design to future work, as this presentation is dense
enough already.

In our base planning experiments, we compare the performance
of an agent that learns a model followed by planning (with a 10%
chance of random actions for exploration) to one that acts purely
randomly. The agent starts with 4000 random actions to learn the
environment model, then uses the planner for the next 4000 steps.
We measure the average steps to reach the goal before and after
planning. Next, we conduct continual learning experiments where
the agent learns with predefined goals and the environment sub-
types switch every 500 steps (with readaptation) or 1000 steps
(without readaptation). We test whether the agent can achieve sim-
ilar performance in different subtypes, both in vanilla and random
environment variants without any readaptation of the model, and
also analyse learning progression when readaptation is enabled.
Finally, we present a demonstrative case of behavior encapsulation

7With the possible exception of high-dimensional visual inputs, which will need an
extension of AAI to incorporate their inherent structure, akin to Convolutional NNs
as compared to fully connected ones.



Figure 6: Average (5 trials) episode durations throughout
learning with changing environment subtypes, with model
readaptation enabled. Vertical limits show the environment
changes, note that the actual step of change varies by a few
steps across trials since end of the ongoing episode is waited.

(a) Full action network. (b) Encapsulated action network.

Figure 7: Example of action networks on test environment.
Bold edges are encapsulated. Each node represents a different
state variable, and each edge represents conditioning and
succession relations between them.

on a learned model. For more details on the experimental setup, see
Appendix A.5. We do not provide comparison with any existing
method since we are not aware of any method that could provide a
meaningful comparison: As discussed in Section 1, to the best of
our knowledge, there are no existing methods in literature that can
either perform unsupervised continual learning of an environment
reliably with no task boundaries and no past sample replay, or per-
form precise goal-directed behavior on a learned model together, or
encapsulate & represent the behavior in an automatically generated
arbitrarily hierarchical structure in a comprehensible manner, let
alone solving all these seemingly disjoint issues with a common
framework.

7 RESULTS AND DISCUSSION
Base Planning: Table 2 compares episode durations for random ac-
tions (first 4000 steps) and planning (next 4000 steps). The planner
significantly reduces the time needed to reach goals compared to
random actions. These results demonstrate AAI’s effectiveness in
accurately modeling the environment and performing goal-directed
behavior. The agent consistently achieves similar performance
across the 4000 steps after the goal introduction, indicating it can
learn the environment independently of the goal and immediately
realize the goal in a learned environment without further train-
ing. This efficiency reduces training costs compared to existing

Table 2: Base goal-directed behavior. Mean episode dura-
tions (across 4000 steps) before the introduction of goal (no
goal) and after it (with goal), for Complete (nonrandom) and
Complete-Random variants of the environment. For the lat-
ter, Modelleyen’s statistical significance filtering have been
enabled. Actions are chosen randomly before the introduc-
tion of the goal. All results are averages across 5 independent
trials. Inside paranthesis are standard deviations.

No goal With goal
Complete 98.1 (17.69) 7.28 (0.5)

Complete-Random 99.22 (32.61) 22.33 (28.2)

methods, as approaches like RL require a goal-dependent reward
signal, necessitating some relearning when goals change, even in
identical environments. However, randomness does have a notable
impact: while planning and modeling remain effective, the presence
of additional connections above the significance threshold leads
to more redundant action choices. This issue arises from relying
only on first-order significance and the challenge of establishing a
universal causal effect limit, a limitation we will address in future
work—see Appendix A.4 for details.

Continual Learning: Table 3 displays the agent’s continual
learning performance across changing environments, with the goal
defined from the start. Both vanilla and random variants main-
tain or even improve their performance after exposure to different
environments, often outperforming initial learning periods, with-
out readaptation. For instance, the vanilla version averages 5.33
steps on the SGS variant during learning and 4.3 steps after inter-
mittent exposure to other subtypes. Figure 6 also illustrates this,
showing that with model adaptation enabled, the agent performs
consistently with its previous endpoint performance in the same
environment subtype, without any spikes indicating destructive
adaptation. Additionally, most steps are spent in the RS variant due
to the precise timing requirements of the planner (as discussed in
Section 4).

Behavior encapsulation Figure 7 shows a sample action net-
work and a demonstration of the resulting encapsulated AN. Here
the start states are (DC,W), hence encapsulation is between these
states (and inactive states for all the rest) and the goal state. The
full action network even for this simple environment is clearly very
complex; however encapsulation can turn it into a comprehensible,
structured, minimal format. On Figure 7b, many paths that are seen
to be alternatives have been encapsulated (example shown from
Group35-D to 1G-A), and only reliable (i.e. necessary) connections
remain; which, upon inspection, can be seen to correspond to the
transition (DC,W)→ (DO,W) that is invariably needed for reaching
the goal from (DC,W). As discussed before, the identified subgoals
and pathways, as well as encapsulated components, can be used as
building-block subpolicies for future behavior, though we did not
yet incorporate this integration with ongoing agent behavior.

8 CONCLUSION
Agential AI, consisting of Modelleyen, a planner designed to op-
erate on top of Modelleyen, and the behavior encapsulator, offers
a promising solution to the core challenges in classical machine



Table 3: Continual learning. Mean episode durations with environment change, for vanilla, random environment, and readap-
tation variants. Columns represent the successive environment subtypes. Subtypes indexed "L" have model learning enabled,
"NL" have it disabled (except for "readaptation" variant, which continues learning throughout the end). All results are averages
across 5 trials.

RS-L SGS-L NEG-L RS-NL SGS-NL
Vanilla 45.58 (25.55) 5.33 (0.28) 4.47 (0.22) 10.38 (1.68) 4.3 (0.11)

Random Env. 190.86 (148.0) 32.3 (9.93) 9.87 (3.45) 121.69 (82.33) 35.05 (5.42)
Readaptation 89.01 (58.72) 28.19 (21.45) 6.06 (0.74) 13.73 (3.45) 4.71 (0.15)

Random actions 275.86 67.53 52.48 275.86 67.53

learning. This paper focuses on its strengths in continual learning,
interpretability, the seamless integration of learning and planning,
and the decomposition of behaviors into flexible hierarchies. The
effectiveness of this approach stems from a shared foundation:
constructing a structured model of the environment while retain-
ing past knowledge through a method driven by local variation
and selection. We coined the term varsel mechanism to describe
this class of learning methods, along with varsel networks for the
networks they construct, which adapt their structure through lo-
calized variation and selection, as exemplified by Modelleyen. We
believe such methods, beyond the specific examples outlined here,
hold significant potential to address the fundamental limitations of
gradient-based machine learning.

The only inherent limitation of AAI is its reliance on discrete
observation and state spaces. Addressing continuous spaces will
require additional methods like preprocessing or analog-digital
conversions [24]. However, many relevant AI problems can be rep-
resented with non-continuous observations or converted into such
formats (e.g., feature-based vision or tasks involving relative values).
The primary exceptions are tasks that require precise, fine-tuned
control; in such cases, AAI could work alongside statistical learn-
ing methods like neural networks for low-level behavior control.
Therefore, explicit support for continuous spaces may not be neces-
sary, as AAI is primarily designed for cognitive tasks in structured
environments rather than control tasks.

8.1 Future work
As mentioned earlier, the current version of AAI serves as a foun-
dation to demonstrate core mechanisms. It has some venues of
development that will addressed in future work.

A key challenge lies in the assumptions about environment ob-
servations and their structure. The current model assumes a Mar-
kovian environment, focusing only on immediate state transitions
and ignoring long-term dependencies. Furthermore, while Mod-
elleyen can already handle structured spaces, such as large visual
inputs by treating each pixel as an independent feature (similar
to how FCNNs process images), adapting it to architectures like
CNNs or transformers would enhance scalability. A crucial step in
this direction is redefining observations as networks rather than
lists of state variables. Visual spaces could be modeled as graphs of
pixels or higher-level features (e.g., edges), while temporal event
chains could be represented as networks capturing sequential de-
pendencies within an episode. By extending Modelleyen’s existing
framework, these source networks could undergo the same algorith-
mic steps outlined in Figures 1 and 2, with the primary modification

being the refinement process, now reinterpreted as "network re-
finement." This shift, explored in Section 5 (Figure 4) for behavior
encapsulation, has shown promising initial results in the visual do-
main, but we leave them out as they fall beyond this paper’s scope.
This would allow Modelleyen to generalize across visual, temporal,
or any other domains expressible as networks. Combined with its
capacity to learn complex succession relationships, this adaptation
would enable the algorithm to handle tasks with high-dimensional,
structured observations.

In addition to expanding the types of observation spaces pro-
cessed, our framework has a few additional avenues that will be ex-
plored in future work. First, the statistical significance calculations
in Modelleyen currently focus only on first-order relationships. For
a more precise tracking of significances, this should be extended to
incorporate upstream conditionings. Additionally, to scale the plan-
ner for more complex environments, selective pathway extension
during planning is required. This can be achieved using existing
mechanisms in Modelleyen, such as returning immediately when a
viable path is found or prioritizing pathways based on statistical
significance. Precise timing in the planner, where needed, can also
be managed by evaluating the full consequences of each pathway
and excluding those that reverse precondition states or activate
conditions that hinder future actions. Another direction for future
development is incorporating behavior encapsulation into ongo-
ing operations to enable reusable behavior patterns. This is a key
motivation for behavior encapsulation, shared by related fields like
hierarchical reinforcement learning. We believe that the structured
representations learned by AAI offer an ideal foundation for this
process. Once these issues are addressed with future iterations, we
believe the approaches we exemplify in this paper has the poten-
tial to significantly advance the development of more capable and
controllable AI systems.
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Figure 8: Illustration of SV types and relationships. The figure
shows BSVs (𝐵𝑖 ), their DSVs for activation (A) and deactiva-
tion (D), and CSVs (𝐶𝑖 ). Here, CSV 𝐶0 takes as positive source
BSV 𝐵0, as negative source the activation DSV of 𝐵1; and con-
ditions the CSV𝐶1 as well as the deactivation of 𝐵2, modelling
"𝐵2 is deactivated and 𝐶1 is active if 𝐵0 is active and 𝐵1 is not
activated."

A APPENDIX
A.1 Details of Modelleyen system components
We define a state variable (SV) as a variable that can take three
values: 1 for active, -1 for inactive, and 0 which can be interpreted
as unobserved, undefined, or irrelevant depending on context. Note
that the numerical values are given only as shorthand notation and
do not participate in an algebraic operation anywhere. The phrase
nonactive refers to any SV that is not active. The SV construct
comes in three subtypes: Base SVs (BSVs), Dynamics SVs (DSVs),
Conditioning SVs (CSVs).

BSV: BSVs are the externally-specified SVs whose states, which is
assumed to be either 1 or -1, are provided externally to the system at
each time instant. These can be regarded as the direct observations
from the environment.

DSV: Each BSV comes with two associated DSVs, for activa-
tion (A-DSV) and deactivation (D-DSV) respectively. Activation at
timestep 𝑡 is defined as the transition of a BSV state from -1 in step
𝑡 − 1 to 1 in step 𝑡 ; and likewise deactivation at 𝑡 is defined from
1 in 𝑡 − 1 to -1 in 𝑡 . At step 𝑡 , A-DSV is deduced active (state 1) if
activation is observed at step 𝑡 , inactive (-1) if a BSV is inactive at
𝑡 − 1 and no activation is observed at 𝑡 , and undefined (0) if the
BSV is already active. Symmetrically, at step 𝑡 , D-DSV is deduced
active (state 1) if deactivation is observed at step 𝑡 , inactive (-1) if
a BSV is active at 𝑡 − 1 and no deactivation is observed at 𝑡 , and
undefined (0) if the BSV is already inactive. The BSVs are modelled
only through changes in their states via their associated DSVs, and
are not predicted by themselves.

CSV: A CSV is a SV that conditions either DSVs or other CSVs
(but not BSVs since they are not subject to direct modelling of their
states); that is, predicts their activation. More specifically; each
CSV comes with a set of positive and negative sources, where each
source is either a BSV or DSV; and a set of targets, which correspond
to the SVs that this CSV conditions. At steady state, a CSV’s source
conditions are said to be satisfied when all its positive sources were
active and all its negative sources were nonactive in the previous
step - in other words, the satisfaction corresponds to the condition
𝑎𝑙𝑙 (𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑜𝑢𝑟𝑐𝑒𝑠) 𝑎𝑛𝑑 𝑛𝑜𝑡 (𝑎𝑛𝑦 (𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑠𝑜𝑢𝑟𝑐𝑒)) in the previ-
ous step. A CSV state is undefined (0) if its source conditions are not

satisfied. If its source conditions are satisfied; a CSV’s state is active
(1) if the state of all its targets are either active or unobserved; and
inactive (-1) if the state of all its targets are either inactive or un-
observed. In case inactive and active targets are observed together,
the CSV is duplicated to encompass the corresponding subsets of
targets (as detailed below), hence we always ensure that one of the
two above conditions will be satisfied with respect to the states of
the targets. A CSV is to be interpreted as a state variable that repre-
sents the observance of a particular relationship - it being active
means that this particular relationship (e.g. a change, as represented
by a DSV, is observed conditioned on some sources) is observed,
and it being inactive means that this relationship is not observed.
The CSV being undefined or unobserved corresponds to the case
in which the conditions for the observation of the relationship are
not satisfied in the first place.

Potential targets of conditioning (i.e. DSVs and CSVs), when they
are not undefined, are expected to be active if one of their condi-
tioners are active; and inactive otherwise. Furthermore, these types
of SVs also possess an unconditionally flag, that allow for excep-
tions in this activity prediction, and are used to model uncertainty
regarding activation of SVs. This flag can take three values: It starts
with a value "unconditional" at the creation of the CSV and, if the
CSV is observed to always be active whenever its sources were
satisfied, it remains so. At the first observation of a case where
the sources of the CSV are satisfied without the CSV being active,
this flag changes to "conditional," signalling that sources alone do
not suffice for the activation of the CSV and activity of one of its
upstream conditioners is expected. The "conditional" value persists
until the first observation of a case where CSV is observed active
without any upstream conditioner being active and no new condi-
tioner could be formed (see below and the main text); in which case
the flag changes to "possibly unconditional" and remains as such.

Over the course of interaction with the environment, Modelleyen
learns a model that predicts the BSV states at the next step indi-
rectly via the prediction of the DSV states. Within the predictions
uncertainty is also represented where needed, as apparent from
the description of the SVs. Since uncertainty is represented in a
local basis (by unconditionality flags of individual SVs), and since
CSVs are points of connection relating potentially multiple sources
to potentially multiple targets; the uncertainty representation can
represent alternative correlated outcomes in a tree-like manner
where each downstream “branch” corresponding to the alternative
outcomes in one direction or another can includemultiple outcomes
that occur together - we note that representation of uncertainty
as such is not possible in a local manner with e.g. classical neural
networks.

A.2 Learning the model
First, we provide an overview of the learning process in one step
of interaction with the environment. During a step, the model is
traversed, and the states of all its SVs are computed. For CSVs
sources and targets are modified to be able to match the current
states to the predictions/explanations of the CSV, so that the model
is consistent with the environment at each step. After that, new
CSVs are generated for the DSVs and CSVs that lack an explanation
at the current step. The new CSV takes as positive sources all



Algorithm 1 Pseudocode of the main Modelleyen adaptation loop;
formed of state computations followed by CSV generation for un-
explained SVs.

Parameter: 𝑁 Set of all target nodes
Function ProcessEnvironmentStep(observations)

1: 𝐵𝑆𝑉𝑆𝑡𝑎𝑡𝑒𝑠 ← 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠

2: 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐷𝑆𝑉𝑆𝑡𝑎𝑡𝑒𝑠 () {Computes DSV states by BSV events}
3: for 𝑙𝑒𝑣𝑒𝑙 ∈ 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 (𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝐿𝑒𝑣𝑒𝑙𝑠) do
4: for 𝐶𝑆𝑉 ∈ 𝑆𝑉𝑠𝑖𝑛(𝑙𝑒𝑣𝑒𝑙) do
5: 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑆𝑡𝑎𝑡𝑒 (𝐶𝑆𝑉 )
6: end for
7: end for
8: 𝑈𝑛𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑𝑆𝑉𝑠 ← [𝑆𝑉 : 𝑆𝑉 .𝑠𝑡𝑎𝑡𝑒 =

1 and 𝑁𝑜𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑒𝑟𝐴𝑐𝑡𝑖𝑣𝑒 (𝑆𝑉 )]
9: 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 ← [𝑆𝑉 : 𝑆𝑉𝑖𝑛 [𝐵𝑆𝑉𝑠, 𝐷𝑆𝑉𝑠] and 𝑆𝑉 .𝑠𝑡𝑎𝑡𝑒 =

1 and 𝑖𝑠𝐸𝑙𝑖𝑔𝑖𝑏𝑙𝑒 (𝑆𝑉 )]
10: 𝑁𝑒𝑤𝐶𝑆𝑉 = 𝐶𝑟𝑒𝑎𝑡𝑒𝐶𝑆𝑉 (𝑠𝑜𝑢𝑟𝑐𝑒𝑠, [𝑆𝑉 :

𝑆𝑉 𝑖𝑛 𝑈𝑛𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑𝑆𝑉𝑠 and 𝑇𝑎𝑟𝑔𝑒𝑡𝐸𝑙𝑖𝑔𝑖𝑏𝑙𝑒 (𝑆𝑉 )])
11: 𝑀𝑜𝑑𝑒𝑙𝑅𝑒 𝑓 𝑖𝑛𝑒𝑚𝑒𝑛𝑡 () {Removes CSVs with no source or target}

currently active eligible SVs in an exhaustive manner. Finally, model
is refined by removal of unnecessary state variables.

The learning process is summarized formally on Algorithms 1
and 2. Below, we provide a detailed breakdown of the processes
described on those algorithms.

Initially, the model is generated with only BSVs and their asso-
ciated DSVs, and without any CSV. At every step, the current and
previous states of all the SVs are recorded, as well as the current
and previous events (activation and deactivation) of every BSV.

At each step, the effective network created by DSVs and CSVs
are traversed in the reverse order of computation, similar to back-
propagation algorithm; starting from DSVs, then the CSVs that
condition these BSVs, then the conditioners of these CSVs, and so
on. Each traversed SV gets their state computed, and additionally
CSV compositions are changed where needed, as in Figure 1 and
detailed below.

A.2.1 Processing of a CSV. The process for CSVs are carried as
follows: If no positive source of a CSV is observed at a given step, its
state is deduced as 0 (undefined/unobserved). If at least one source
is observed, and if there are both active and inactive targets among
the CSV targets, then the CSV is duplicated with different target
sets to create one copy that includes active targets and one copy
that includes inactive targets (and any undefined targets are shared
by both). This ensures that the CSV remains consistent, since it’s
activation represents the activation of all its targets provided they
are not undefined. There is no way to say whether an undefined
target will be consistent with one duplicate or another after the
changes to the CSV described below without observing a non-
undefined state in them, so they are put into both copies and do
not otherwise affect the state deduction of the CSV (except if all
targets are undefined, see below).

Following this operation, if a CSV has any target active, then
its state is deduced as active (1). If there is no perfect match with
the standing sources of CSV and their activations (i.e. there are

Algorithm 2 Pseudocode for CSV state computation.
Function ComputeState(𝐶𝑆𝑉 )
1: if 𝐴𝑛𝑦𝑆𝑜𝑢𝑟𝑐𝑒𝐴𝑐𝑡𝑖𝑣𝑒 () then
2: 𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑒𝐴𝑐𝑡𝑖𝑣𝑒𝐼𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑇𝑎𝑟𝑔𝑒𝑡𝑠 () {Creates two CSVs from

current one with active and inactive targets in either of them}

3: if 𝐴𝑛𝑦𝑇𝑎𝑟𝑔𝑒𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 () then
4: 𝑆𝑡𝑎𝑡𝑒 = 1
5: 𝑃𝑜𝑠𝑆𝑜𝑢𝑟𝑐𝑒𝑠 ← [𝑠𝑜𝑢𝑟𝑐𝑒 :

𝑠𝑜𝑢𝑟𝑐𝑒 𝑖𝑛 𝑃𝑜𝑠𝑆𝑜𝑢𝑟𝑐𝑒𝑠 and 𝑠𝑜𝑢𝑟𝑐𝑒.𝑠𝑡𝑎𝑡𝑒 = 1]
6: 𝑁𝑒𝑔𝑆𝑜𝑢𝑟𝑐𝑒𝑠 ← [𝑠𝑜𝑢𝑟𝑐𝑒 :

𝑠𝑜𝑢𝑟𝑐𝑒 𝑖𝑛 𝑁𝑒𝑔𝑆𝑜𝑢𝑟𝑐𝑒𝑠 and 𝑠𝑜𝑢𝑟𝑐𝑒.𝑠𝑡𝑎𝑡𝑒! = 1]
7: else if 𝐴𝑛𝑦𝑇𝑎𝑟𝑔𝑒𝑡𝐼𝑛𝑎𝑐𝑡𝑖𝑣𝑒 () then
8: if 𝑛𝑜𝑡 (𝐴𝑙𝑙𝑆𝑜𝑢𝑟𝑐𝑒𝑠𝐴𝑐𝑡𝑖𝑣𝑒 ()) then
9: 𝑆𝑡𝑎𝑡𝑒 = 1
10: else
11: if 𝐴𝑛𝑦𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑆𝑜𝑢𝑟𝑐𝑒𝐴𝑐𝑡𝑖𝑣𝑒 () then
12: 𝑆𝑡𝑎𝑡𝑒 = 0
13: 𝑁𝑒𝑔𝑆𝑜𝑢𝑟𝑐𝑒𝑠 ← [𝑠𝑜𝑢𝑟𝑐𝑒 :

𝑠𝑜𝑢𝑟𝑐𝑒 𝑖𝑛 𝑁𝑒𝑔𝑆𝑜𝑢𝑟𝑐𝑒𝑠 and 𝑠𝑜𝑢𝑟𝑐𝑒.𝑆𝑡𝑎𝑡𝑒 = 1]
14: else
15: 𝑆𝑡𝑎𝑡𝑒 = −1 {No negative source active to explain

inactivity of targets}
16: end if
17: end if
18: end if
19: else
20: 𝑆𝑡𝑎𝑡𝑒 = 0 {Unobserved if targets are not observed}
21: end if
22: if 𝑆𝑡𝑎𝑡𝑒 = −1 then
23: if 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝐹𝑜𝑟𝑚𝑒𝑑 then
24: 𝐹𝑜𝑟𝑚𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 ()
25: else
26: 𝑢𝑛𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 = ”𝑖𝑠𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙” {-1 for }
27: end if
28: end if

either inactive positive sources or active negative sources), these
source lists are refined so that the remaining sources correspond
perfectly to the current state of the network - in other words, any
positive source that is inactive and any negative source that is active
is removed. This refinement eliminates parts of the previously-
posited relationships “hypothesized” to be necessary by the CSV in
an exhaustive manner (see details on CSV formation, below) that
are observed to be not necessary for the observation of the effect
that the CSV models (Figure 1c.

If, on the other hand, the CSV has any inactive target (which
is exclusive with any target being active due to the duplication-
differentiation operation made above) and if not all its positive
sources are active, then the state is deduced as 0, being consistent
with the interpretation of a CSV as being defined only if all its
positive sources are active. If however, all positive sources are
active; then we look if any negative source is active that can justify
the inactivation of the targets of the CSV. If there is at least one
negative source that is active, we deduce the state as 0 since source
conditions are not satisfied; and refine the negative targets that



are not currently active in the same manner we described in the
previous paragraph (due to the observation that they are seen to
be not necessary for the suppression of the CSV - Figure 1e).

If, instead, all the targets of CSV are undefined, then the CSV is
undefined as well.

A CSV is always created with only positive sources at first and
no negative sources, and a CSV always starts as an unconditional
CSV for whom we never expect to observe an inactive state (see
below part for details on the generation of CSVs). At the obser-
vation of an inactive state in the CSV (i.e. one in which sources
are active but targets are inactive), only once after the creation of
the CSV, we duplicate the CSV and separate the targets that are
currently undefined (to protect them from the change being made).
In the duplicate that has the inactive targets, we connect the CSV
with the negative sources by forming a negative sources list that
encompasses all the currently-active eligible BSVs and DSVs in
the model, which will be subject to future refinement (criteria of
eligibility is detailed in the Appendix, essentially corresponding to
SVs that do not yield useful information). This, essentially, attempts
to explain the CSV’s observed inactivation. If, however, an inactive
state is observed despite already having formed connection with
negative sources, then the unconditionally flag of the CSV is set to
"conditional", representing that the CSV’s state is now uncertain
(setting aside its possible conditioners).

A.2.2 CSV generation and model refinement. After the traversal
of SVs for computation of their states and modifications in CSV
compositions, all DSVs and CSVs who are observed active but are
neither unconditional nor have an active conditioner that explains
their activation are labelled as unexplained. We then form a CSV
that, as positive sources, has all the eligible, currently-active BSVs
and DSVs; and as target, has all the eligible SVs in unexplained
list (Figure 1a). Any target which is left outside of this CSV, and
hence remain unexplained, have their unconditionally flags set to
"possibly conditional" (which basically signals that the SV can go
active without any explanation or predictor).

Finally, at the end of the step, we refine the general model by
removing any CSVs that may be duplicates of other CSVs (ending
up representing the same thing from different histories), as well as
any CSV that has no sources or targets left as a result of refinement
or duplication operations.

A.2.3 Source eligibility for CSVs. To reduce model complexity and
avoid the need for repeated exposures to the environment, we
pre-filter sources during CSV formation or CSV negative-sources
formation by their eligibility as follows: We define trivial sources of
a CSV as the sources of all the SVs that lie downstream starting from
this CSV (i.e. SVs conditioned by this CSV, and CSVs conditioned
by them, and so on), plus the associated BSV if a DSV is reached.
Intuitively, these are the sources whose states can be determined
by the knowledge that the CSV is active (since a CSV being active
means that it’s target will be active as well, which will inform us
about the states of its sources), and hence wouldn’t be informative
sources for the current CSV as any information conveyed by them
will be trivial. When forming a CSV, among all the currently-active
BSV and DSVs, we filter those that provide trivial information to all
the unexplained SVs (i.e. prospective targets for the generated CSV)
out as positive sources, and take only those that do not provide

trivial information as source to at least one of them. Furthermore,
after this filtering, if there is a prospective target for which all the
remaining prospective sources provide trivial information, then
this target is not taken as a target of the CSV and hence remains
unexplained.

In a similar spirit, when forming negative sources, we filter out
all the candidates that provide trivial information for the CSVs.
In addition, however, we filter out any upstream positive source
(that is, the cumulative list of all positive sources among all up-
stream CSVs of this CSV, i.e. its conditioners and conditioners of
its conditioners, including itself) because we already know (by the
definition of the conditioning process) that there was an instance in
which this CSV was observed when the SVs in this list of positive
conditioners was also observed; and hence these negative sources
would be eliminated in exposure with the same instance again.

A.2.4 Conditioner formation for unconditional CSVs. Here we note
a modification that we do not employ currently, but is possible:
Currently we allow no CSVs to condition unconditional CSVs since
they are not informative and hence prevent the model from being
minimal. However, we note that allowing for conditioners to be
formed to unexplained (no active conditioners) unconditional CSVs
as well could result in these CSVs already having some condition-
ers learned from the previous encounters with the environment in
case they ever turn conditional, reducing the required number of
interactions for the learning of the full environment model, at the
cost of making the model more exhaustive in terms of what is being
modelled. This would require two changes: (1) At CSV formation,
not excluding the unexplained CSVs that are unconditional; and
(2) when refining positive sources, we create a CSV which takes as
its initial positive sources that are being removed, and that condi-
tions the CSV whose sources are being refined currently. This way,
instead of removing what was observed to be active at previous
encounters at which the CSV was active, we push them to an upper
level of computation to represent an alternative condition in which
the CSV was observed to be active before.

A.3 Proof of Theorem 1
Let 𝑋 𝑖

𝑃
and 𝑋 𝑖

𝑁
be positive and negative sources of 𝐶 respectively

that remains after refinements that instance 𝑦𝑖 causes. Since we
know that 𝐶 does not undergo negative sources formation, and
that 𝑦0 comes before 𝑦1, we can say that 𝑋 1

𝑃
⊆ 𝑋 0

𝑃
and 𝑋 1

𝑁
⊆ 𝑋 0

𝑁
since only refinements are allowed on 𝑋𝑃 and 𝑋𝑁 sets of 𝐶 by our
definition of operations.

We now analyse the two possible cases with respect to satisfac-
tion of sources:

• If, in the original encounter with 𝑦0 the sources of 𝐶 were
satisfied, then we had 𝑆𝑥 = 1∀𝑥 ∈ 𝑋 0

𝑃
and 𝑆𝑥 = 1∀𝑥 ∈ 𝑋 0

𝑃
.

Since 𝑋 1
𝑃
⊆ 𝑋 0

𝑃
and 𝑋 1

𝑁
⊆ 𝑋 0

𝑁
, we will also have 𝑆𝑥 =

1 ∀𝑥 ∈ 𝑋 1
𝑃
and 𝑆𝑥 = 1 ∀𝑥 ∈ 𝑋 1

𝑃
at the new encounter

with instance 𝑦0. Hence, if sources of 𝐶 were satisfied in the
previous encounter with 𝑦0, they will remain satisfied in the
new encounter. The value of 𝑆𝐶 can be -1 or 1 if and only
if sources of 𝐶 are satisfied; in which case it is exclusively
determined by the state of its targets (-1 if targets are inactive
and 1 if targets are active). Since the states of targets are



determined by 𝑦0 and hence is the same across the past and
new encounter with 𝑦0; if 𝑆𝐶 = 1(−1) in the past exposure
with 𝑦0, then it will be 1(−1) in the new exposure as well.
• If, in the original encounter with𝑦0 the sources of𝐶 were not
satisfied (and hence original encounter yielded 𝑆𝐶 = 0), then
we either had 𝑆𝑥 ≠ 1 ∀𝑥 ∈ 𝑋 0

𝑃
or 𝑆𝑥 = 1 ∀𝑥 ∈ 𝑋 0

𝑁
(note that

we defined 𝑋 𝑖
𝑃
and 𝑋 𝑖

𝑁
as source sets after the refinements;

and hence we know that in both cases it will be the whole
of positive/negative source sets that have the property, and
not a subset of them; since the source SVs that were not a
part of that subset will have been refined). Since 𝑋 1

𝑃
⊆ 𝑋 0

𝑃

and 𝑋 1
𝑁
⊆ 𝑋 0

𝑁
, we will also have either 𝑆𝑥 ≠ 1 ∀𝑥 ∈ 𝑋 1

𝑃

(if former) or 𝑆𝑥 = 1 ∀𝑥 ∈ 𝑋 1
𝑁

(if latter), both of them
not satisfying the sources conditions of 𝐶 (hence the new
encounter with 𝑦0 also yielding 𝑆𝐶 = 0.

Therefore, in all cases, response to 𝑦0 remains identical before
and after exposure to 𝑦1.

A.4 Learning the statistical significance of
encountered relations

The base mechanisms of Modelleyen as described in the main text
rest on an attempt of prediction of all encountered changes in state
variables in the environment, forming an explanatory/predictive
relationship between any two observed events in that attempt of
full modelling of the environment. Unlike neural networks (or other
statistical learning methods), the naive algorithm does not depend
on, but also does not naturally incorporate, a method of statisti-
cally averaging and filtering learned relationships. Such a means of
estimation of statistical significance of learned relationships can be
incorporated into the models learned by modelleyen in a straight-
forward manner into the learned relationships locally, which in
turn can be used to filter out non-significant relationships, hence
preventing overcomplexification of the model.

Let 𝐶 be a CSV, and let 𝑇 be a target SV of that CSV. We define
the event sources satisfied, 𝑆𝑆 (𝐶), to be the event where all positive
sources of 𝐶 are active and all negative sources are nonactive. For
each target, we define an observation of the target𝑂 (𝑇 ) to be when
the target is observed (i.e. either active or inactive, state 1 or -1, as
defined in the main text) and an incidence of the target 𝐼 (𝑇 ) to be
when the target is active (state 1). We define the event concurrence
to be the event where both the sources of 𝐶 are satisfied and there
is an indicence of target, 𝐶𝐶 (𝐶,𝑇 ) = 𝑆𝑆 (𝐶) ∧ 𝐼 (𝑇 ).

We quantify the statistical significance of a learned relationship
between a set of sources of a CSV and one of its targets as the amount
of increase in the probability of the incidence of the target given the
satisfaction of the sources of the CSV. We define normalized causal
effect (NCE) as the amount of increase in probability of incidence of
𝑇 that satisfaction of sources of CSV 𝐶 causes, normalized by the
original probability of incidence:

𝑁𝐶𝐸 =
𝑃 (𝐼 (𝑇 ) |𝑆𝑆 (𝐶)) − 𝑃 (𝐼 (𝑇 ))

𝑃 (𝐼 (𝑇 )) (2)

The conditional probability in the nominator can be expanded
as:

𝑃 (𝐼 (𝑇 ) |𝑆𝑆 (𝐶)) = 𝑃 (𝐼 (𝑇 ), 𝑆𝑆 (𝐶))
𝑃 (𝑆𝑆 (𝐶)) =

𝑃 (𝐶𝐶 (𝐶,𝑇 ))
𝑃 (𝑆𝑆 (𝐶)) (3)

by our definition of concurrence 𝐶𝐶 (𝐶,𝑇 ) above. All of the
probabilities can be computed by locally tracking of the number
of instances that the corresponding events are observed, when
the target is observed (i.e. 𝑂 (𝑇 ) = 1). When the target is unob-
served/undefined, by extension none of the other events are ob-
served.

A positive NCE means that 𝑆𝑆 (𝐶) increases probability of 𝐼 (𝑇 )
and a negative NCE means that 𝑆𝑆 (𝐶) decreases it. An NCE of e.g.
2.0 means that 𝑆𝑆 (𝐶) increases probability of 𝐼 (𝑇 ) to 3 times the
original probability. Within the context of our modelling mecha-
nism, a negative NCE means that the relationship between sources
of𝐶 and𝑇 has been learned in the wrong direction - actual negative
relations learned in proper direction will still result in positive NCE,
because the sources of that relation will go within the negative
sources of 𝐶 instead of the positive ones, still in the end resulting
in the 𝑆𝑆 (𝐶). The lower the magnitude of NCE, the less significant
the relationship is.

Given NCE values for each relationship, one can set a positive
threshold 𝜖𝑇 , where NCE values with magnitude below it are re-
garded as statistically insignificant. 𝜖𝑇 represents the trade-off be-
tween complete modelling and model complexity. After that separa-
tion of relationships into significant and insignificant ones, one can
proceed either with their removal, or simply with blocking further
conditioner formation for them to prevent overcomplexification in
an attempt to predict a near-random relationship (i.e. to prevent
"fitting the noise"). Since our main aim in employing this mecha-
nism is to prevent overcomplexification, and since removal of such
insignificant relationships from the model completely would result
in their re-learning if the agent is exposed to them again; we opt
for the latter option and block further conditioner formation for
them.

NCE values may have other utilities for the processes of the
agent. An example might be that it can be used in the prioritization
of subgoals in the planner (see main text), where more reliable
causal relationhips are prioritized over less reliable ones. We do not
investigate into such utilities at this stage.

It’s important to note that the statistical estimates are not precise
during the transient phase. This is due to the refinement mecha-
nism, which prioritizes structural revisions and adjustments to
make a given CSV align with observations where feasible. During
this phase, estimates tend to overemphasize significance. However,
these transients are brief, and NCEs insignificant CSVs quickly
diminish once the refinements are complete and the CSV sources
settle into their final form. Furthermore, this final form is typically
less constrained, leading to more exposures over time in the same
environment. Alternatively, we could eliminate these inaccuracies
by resetting recorded statistics after each change to the CSV’s com-
position, though this would increase the time needed for an NCE
value to be deemed reliable. We do not use this approach here, as
we do not find the temporary bias toward significance in transient
SVs to be an issue, but it can be employed where precision has
priority over efficiency.



Effect on continual learning. Notice that there is no change (par-
ticularly no decay) in NCE if the target is not observed - hence,
this measure of statistical significance does not decay (relationship
"forgotten") in case of a changed environment in which the new
one does not display the co-occurance of the two events (target and
CSV sources being satisfied), as long as its target is not observed in
isolation as well. If its target is observed in the new environment,
two cases may occur:

(1) 𝑃 (𝐼 (𝑇 )) is stable. This would be expected in an already-
mature model or in environments where there is not much
variability in the occurance of individual targets (even if the
conditions under which they occur differ). In this case, there
is no change in NCE.

(2) 𝑃 (𝐼 (𝑇 )) changes. In this case, NCE will change according to
𝑃 (𝐼 (𝑇 )). Note, however, that additional exposure can only
mean a more accurate estimate of the true 𝑃 (𝐼 (𝑇 )) value -
any change in 𝑃 (𝐼 (𝑇 )) hence does not have a detrimental
effect, but instead makes the causal effect estimate more
reliable in the context of the complete model; provided that
the new environment itself does not have a probability of
𝑃 (𝐼 (𝑇 )) in itself that is non-representative of the general
probability, in particularly one that is excessively higher
than the general one. This latter possibility (an immature
estimate of 𝑃 (𝐼 (𝑇 )) and an unnaturally high 𝑃 (𝐼 (𝑇 )) in the
new environment) is the only case in which a previously-
learned correct relationship can be wrongly destroyed in
case of a changing environment. But even such cases would
have no long-term ramifications as 𝑃 (𝐼 (𝑇 )) for any given
target𝑇 would reach to a reliable estimate after a few cycles
of exposures to environments where 𝑇 is observed.

The current method of computing and filtering based on statis-
tical significance has one drawback, however; and it is that only
first-order significance of relations are considered. In other words:
If we have a CSV C0 with a target D0, and C0 (possibly uncon-
ditional) is conditioned by another CSV C1, then whether C0-D0
relationship will be regarded as significant or not depends only on
the observations of sources of C0 and D0; and will not consider
their dependency on C1. This may result in unnecessary filtering in
cases where a said statistical relationship is insignificant in the ab-
sence of a particular upstream conditioner, but becomes significant
with that - we also see effects of this limitation to some degree in
our results in the main text. Resolution of this limitation requires
consideration of and conditioning on higher-order conditioners
when computing the NCE value, and is left for future work.

A.5 Details of experimental framework
Significance filtering. Modelleyen’s mechanism of filtering based

on statistical significance (i.e. NCE) is enabled only for the random
variant of the environment. When enabled, we used a cutoff NCE
of 0.25 for blocking upstream conditioner formations (i.e. no more
upstream conditioners are formed if the CSV does not cause a >25%
in the probability of occurrence of its target).

Intuition regarding the design of environment in Figure 5. The en-
vironment was inspired from Multiroom environment in Minigrid.
The states represent closed door (DC), open door (DO), wall (W),
subgoal 1/2 (SG1/2), goal (G) and a random variable (X); "RS" stands

for "rooms" and represents an agent going through multiple rooms
opening doors in each, and "SGS" represents one in which agent
reaches two subgoals and then reaches the goal afterwards, and
"NEG" represents a case where goal appears conditioned on one
positive and one negative conditon. In all, the goal can be moving.
Alternative outcomes are present in all environment subtypes, since
each of them allows for multiple outcomes following an empty ("-/-
") state. Alternative predecessors are tested in "SGS" environment
where SG2 can be preceded by SG1 in either of the two cells; and
likewise in general the appearance of G can be preceded by any
of the alternatives associated with different environment subtypes.
The capability to represent positive and negative relations together
is tested in subtype "NEG", in which G appears only if X is enabled
in the first cell and not the second one.

Computation resources. All experiments were run on a 2.4GHz
8-Core Intel Core i9 processor with 32 GB 2667MHz DDR4 mem-
ory. No GPU was used. Giving an accurate estimate for computa-
tion time is impossible since experiments were run in parallel to
unevenly-distributed independent workloads.

A.6 A sample model learned on SMR
A sample model learned on the SMR environment (Figure 5) is pro-
vided on Figure 9. Figure ?? provides, as an example, the pathway of
BSV 1G (state G at cell 1), in which the specific pathways connecting
to this BSV can be seen more clearly in a human-comprehensible
manner. Figure 11 shows the whole model, but only with reliable
connections; clearly showing "islands of certain state transitions"
which can be an example of a delimiting criterion that can be used
for abstractions as discussed in the main text.



Figure 9: A sample environment model learned by Modelleyen. In the visualized model, brown nodes are BSVs, blues are DSVs,
and the rest are CSVs. The enlarged pathways (bold arrows and large nodes) are reliable outcomes (i.e. unconditional CSVs) and
the rest are uncertain (possibly conditional) ones. Black arrows represent conditioning relationships and gray arrows represent
source relationships (all positive in this example). Disconnected SVs (those that can never be activated by environment design)
are cut for visual clarity.



Algorithm 3 Simplified overview of the planning algorithm, rely-
ing on recursive generation of upstream action networks (the graph
of behaviors required to realize the desired goals from the currently
active SVs).

Function Plan(currentActiveSVs, goalSVs)

1: ActionNetwork← EmptyNet
2: for SV, target ∈ goalSVs do
3: GenerateUpstreamAN(SV, target)
4: end for
Comment: Argument "target" states what the desired state is in the
SV, which can be activation (A), deactivation (D), active (1) or

nonactive (0). Irrelevant for CSVs.
Function GenerateUpstreamAN(SV, target)

1: if satisfiedByCurrentActives(SV, target): return True
2: pathways← EmptyList
3: if type(SV) in [BSV, GSV] then
4: pathways.add(Precondition(sv, target))
5: Comment: These are the preconditions for target to occur in a

SV. For (A, D, 1, 0) they are (0, 1, A, D) respectively; since a SV
must be activated for itself to be active, needs to be inactive for
itself to get activated, and so on.

6: pathways.add(Constituents(sv), target)
7: pathways.add(Constituencies(sv), target)
8: if target in [’A’, ’D’]: pathways.add(Conditioners(sv, target))
9: else if type(SV) is CSV then
10: pathways.add(Sources(sv))
11: pathways.add(Conditioners(sv))
12: end if
13: if pathways is Empty: return False
14: for upstreamSV, upstreamTarget in pathways do
15: ActionNetwork.AddEdge((upstreamSV, upstreamTarget),

(SV, target))
16: GenerateUpstreamAN(upstreamSV, upstreamTarget)
17: end for



Figure 11: Same model as Figure 9, but with reliable pathways only, showing "islands of certainty" as potential candidates for
abstraction.
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