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ABSTRACT
Continual learning for reinforcement learning agents remains a
significant challenge, particularly in preserving and leveraging ex-
isting information without an external signal to indicate changes in
tasks or environments. In this study, we explore the effectiveness
of autoencoders in detecting new tasks and matching observed
environments to previously encountered ones. Our approach inte-
grates policy optimization with familiarity autoencoders within an
end-to-end continual learning system. This system can recognize
and learn new tasks or environments while preserving knowledge
from earlier experiences and can selectively retrieve relevant knowl-
edge when re-encountering a known environment. Initial results
demonstrate successful continual learning without external signals
to indicate task changes or reencounters, showing promise for this
methodology.
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1 INTRODUCTION
Deep reinforcement learning [15] has successfully tackled numer-
ous challenges once deemed among the most difficult for intelligent
agents, including tasks like intuition-based gaming [24], real-world
robotics [10], and multi-agent systems [28]. However, a major limi-
tation of current systems is their inability to engage in continual
learning—learning across dynamic environments without succumb-
ing to destructive adaptation, where previously learned knowledge
is lost. This stands in contrast to the abilities of human intelligence.
For example, when children learn to ride a bicycle, they acquire the
balancing skills necessary to maintain stability. These foundational
skills are retained even as they go on to learn a variety of other
tasks that also require balance, such as skateboarding or skiing,
which do not destructively interfere with the skill of being balanced
on a bike. Unfortunately, most approaches proposed to address the
issue of destructive adaptation in continual learning in artificial
agents rely on constraints within the problem domain, often re-
quiring explicit storage and re-exposure to past data or assuming
the presence of external task boundaries or signals for new tasks.
These assumptions limit the systems to a constrained, partial form
of continual learning.

In this work, we explore the use of autoencoders to enable con-
tinual learning in deep reinforcement learning agents, without
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Figure 1: Our two experimental domains: Minigrid envi-
ronment subtypes [8] (a-c) and Atari games [25] (d-f) to be
learned incrementally.

relying on the limiting assumptions of past data replay or exter-
nal task-boundary information. To achieve this, we employ an
incrementally growing system design where the agent creates and
utilizes a new neural network for each distinct environment, en-
suring that learning in one environment does not interfere with
others. Autoencoders are employed as a mechanism for detecting
new environments or matching incoming observations to previ-
ously encountered ones. Our approach avoids explicit storage or
replay of past samples and does not assume any designer-specified
signals to inform the agent about environment changes, exposure
to new environments, or which past environment it is currently
facing.

We assess the efficacy of this approach in progressively learning
multiple tasks across two experimental settings (Figure 1). The first
setting is Minigrid [8], a straightforward grid environment where
an agent learns several tasks within a shared base environment.
The second setting involves the Atari benchmarks [25], where the
agent is tasked with successively mastering different games without
forgetting its ability to play the earlier ones. These are well-known
benchmarks for agent reinforcement learning [6, 17]. In these do-
mains, distinct environments and tasks necessitate a diverse set of



skills, each with varying degrees of relevance depending on the
task at hand, making sequential learning a natural approach. In
both cases, we illustrate that a conventional reinforcement learning
agent experiences a total erosion of prior knowledge, whereas our
method enables continual learning without compromising perfor-
mance.

2 RELATEDWORK
Continual learning, also known as incremental or lifelong learning,
refers to the ability of AI systems to learn sequentially from an
ongoing stream of tasks [11, 27]. A key challenge in continual
learning is "catastrophic forgetting"—or, as we prefer to call it,
"destructive adaptation"1. When new examples differ significantly
from prior ones, they can overwrite previously learned knowledge
in the network—a problem for which no reliable solution currently
exists [11, 18, 30].

Fixed-capacity systems are inherently inadequate for addressing
this problem: since neural networks encode information in a dis-
tributed fashion, the entire capacity is utilized by previous tasks. As
a result, existing knowledge is eventually (and often immediately)
overwritten when new tasks significantly diverge from earlier ones.
On the other hand, methods that expand capacity face their own
limitations. These systems cannot autonomously decide when to
increase capacity, how to allocate new components to different
tasks, or how to select the appropriate component when revisiting
past tasks. For instance, in [22], external signals are required both
to recognize a new task and to specify which past task is being
revisited. This limitation also affects methods that explicitly store
information about previous task solutions, such as [14]. Some ex-
tensions attempt to address these issues but still rely on task labels
during adaptation and lack mechanisms for detecting new tasks, as
seen in [12]. Consequently, these methods fail to provide systems
with fully autonomous continual adaptation capabilities.

Other approaches eliminate the need for explicit "task bound-
aries" by relying on the storage and replay of past data [4, 7], as
noted in Table 1 of [5]. However, this strategy is impractical in
many real-world settings, not only because it does away with one
of the primary motivators of continual learning, but also due to
the extensive memory demands over a system’s lifetime, as well as
concerns related to confidentiality and data protection.

The challenges of continual learning and destructive adaptation
extend from the domain of supervised learning to reinforcement
learning models as well [1, 2, 13]. Similarly, the solutions face com-
parable limitations, with reinforcement learning methods often
relying on either the storage or replay of past data [21, 26], or the
use of externally signaled task boundaries [22, 23].

Our approach draws inspiration from the use of autoencoders
for novelty detection [3, 9, 12, 20], as well as the application of au-
toencoders in continual learning for supervised tasks by matching
observed samples to previously learned "tasks" without needing
external specification of the current task [3, 12] (but still requiring
external signification of an incoming new task). While novelty de-
tection has been applied to reinforcement learning in some cases

1We use the term "destructive adaptation" to avoid the anthropomorphic connotation of
"catastrophic forgetting," which inaccurately suggests a gradual, human-like forgetting
process. Instead, the phenomenon involves the active overwriting of past information,
an issue that affects all adaptive systems.

(e.g., [30]), to our knowledge, it has not yet been used in conjunction
with autoencoders to achieve full continual learning capabilities.
This includes new task detection and prior task recognition, without
the need for external signals or data replay, and without simplifying
assumptions.

3 AUTOENCODER-DRIVEN TASK AND NEW
ENVIRONMENT RECOGNITION

3.1 Motivation and basis
Our goal is to facilitate continual learning without destructive in-
terference, avoiding explicit storage or replay of past samples, and
without relying on external cues to indicate which task the agent is
encountering or whether the current task is new or previously seen.
In essence, we aim for the agent to preserve past knowledge intact,
retrieve it as needed based on the demands of the current environ-
ment, and recognize when it should be acquiring new knowledge
rather than reusing what it has already learned.

As outlined in Section 2, any reliable method that ensures no
loss of knowledge over an indefinite period and across an arbitrary
number of tasks must incorporate mechanisms for expanding learn-
ing capacity. Accordingly, our design utilizes a system of multiple
neural networks, each functioning as a policy network, added in-
crementally. Each policy network is tailored to a specific task or
environment2. This approach aligns with established methods in
the literature, where different tasks are associated with distinct,
mostly or entirely independent neural networks [12, 22], facilitating
the preservation of previously acquired knowledge.

3.2 Task recognition
Building on the foundation of multiple task-specific policy net-
works, our next goal is to implement a mechanism that can (1)
assign the appropriate policy network based on the environment
the agent encounters (retrieval) and (2) detect when the agent faces
a previously unseen environment (new environment recognition),
all without relying on external signals. To achieve this, we pro-
pose learning the features of the encountered environment during
training, employing undercomplete autoencoders as a mainstream,
efficient approach to do so [16]. We leverage the ability of the au-
toencoder to reconstruct these features as an indicator of whether
an incoming observation matches a previously learned environ-
ment, and as a quantification of the degree of match.3 Specifically,
an undercomplete autoencoder (with a bottleneck layer smaller
than the input/output dimensionality) learns to encode the key
features necessary for reconstructing the original observation (e.g.,
an image) in a lower-dimensional space. This encoding is task-
dependent, emphasizing features prominent to each training task.
As a result, incoming data outside the distribution the autoencoder

2Weassume that a task change corresponds to an observable change in the environment.
The generalization of our approach to handle changes in the environment’s reward
structure without observable changes is straightforward and covered in Section 6
3While simpler statistical methods, such as using averages and standard deviations per
observation, can suffice in domains where tasks exhibit clear and broad differences,
they fail in settings where most of the environment remains identical across tasks, with
only subtle, sometimes conditional changes. The Minigrid [8] domain we experiment
on is an example of this. The most general way to distinguish between environments,
even in the presence of subtle variations, is to aim for a full reconstruction, capturing
all conditional relationships.



was trained on will manifest as imperfect reconstructions, signaling
a new environment.

Our complete design is as follows (see Figure 2 for a summary,
which is described in detail below):

For each new environment, a policy network and a correspond-
ing autoencoder are initialized. As the agent interacts with the
environment and learns the policy, it simultaneously gathers obser-
vations. After the policy training is completed, these observations
are used to train an environment-specific autoencoder. This au-
toencoder learns to capture the key features of the environment
by minimizing the reconstruction error between the input observa-
tions and the reconstructed output.

Assumption: We assume that a specific environment type re-
mains available throughout training until the policy converges, or
alternatively, that past training data is stored until the policy on a
given environment reaches convergence (not to be confused with
the storage of past data indefinitely for replay purposes, which we
specifically avoid). This assumption does not impact the theoretical
capabilities of our method; it merely defines what constitutes "one
distinct environment/task." This assumption can be relaxed if we
accept potential overfitting to different variations of the "same" en-
vironment (e.g., different room layouts in Minigrid Multiroom). In
such cases, the agent would learn distinct policies for each unique
variation (e.g., in Minigrid Multiroom, rooms with opposing doors
versus neighboring doors would be treated as different environ-
ments). Alternatively, if the agent encounters frequently changing
subtypes of an environment before convergence, all such varia-
tions would be grouped under the same policy network, and the
associated autoencoder would adapt to encompass all subtypes
(for instance, one policy could learn both Multiroom and Lava sub-
types in Minigrid if these variants are repeatedly observed). These
variations do not degrade performance or continual learning; they
only affect the final configuration of the policy and autoencoder
networks.

Once the autoencoder is trained, an estimation of a reconstruc-
tion error threshold is computed based on the distribution of re-
construction errors during training, per task. We do this by using
a batch-wise averaging approach. First, the reconstruction errors
are calculated for batches of validation observations. A Gaussian
distribution is then fitted to the batch-wise average reconstruc-
tion errors. The threshold is determined by calculating the value
that corresponds to a specified confidence level (e.g. 99%) using
the cumulative distribution function (CDF) of the fitted distribu-
tion. This threshold ensures that reconstruction errors exceeding
it are flagged as indicative of a novel environment. This approach
enables us to dynamically determine the expected reconstruction
performance for different environment types—an important con-
sideration, as our preliminary experiments revealed that typical
reconstruction errors vary significantly across tasks. As a result, a
fixed reconstruction threshold cannot be applied uniformly.

To recognize novelty, the collected observations are passed through
a set of trained autoencoders from previously encountered environ-
ments. If all the autoencoders produce reconstruction errors above
their respective estimated thresholds (see above), the environment
is classified as novel, prompting the training of a new autoencoder
and policy network for the new environment. However, if one or

more autoencoders reconstruct the observations with an error be-
low their thresholds, the environment is recognized as familiar.
In such cases, the autoencoder with the smallest reconstruction
error is identified as the best match, and its corresponding policy
network is used to continue interacting with the environment.

3.3 Summary and illustrative example
Figure 2 illustrates the agent’s novelty recognition process using
autoencoders, exemplified with some reconstructions from our
experiments in Minigrid environment variants. Here, the agent’s
knowledge includes three environments: LavaGap, DoorKey, and
DynamicObstacles. The agent’s current observation (from the Lava-
Gap environment) is passed through all three autoencoders for the
three environment types. In the first alternative outcome (Option 1
in Figure 2), Autoencoder 3 (trained on LavaGap) yields the lowest
reconstruction error, below its corresponding threshold, allowing
the agent to identify the environment as the one that its policy, Pol-
icy 3, was trained on (again, LavaGap); hence it retrieves this policy
model for interaction with the environment. If, on the other hand,
none of the autoencoders match (i.e. all reconstruction errors are
above their thresholds - Option 2 in Figure 2), the agent recognizes
the environment as novel. For example, if a fourth environment is
introduced, the agent would start training a new PPO model and a
new autoencoder, and estimate a threshold for the new task, adding
it to its knowledge for future encounters. In that manner, the agent
can learn an arbitrary number of future tasks, without destroying
knowledge about any of the past tasks.

Finally, we would like to note that while we used this framework
of associated autoencoders in conjunction with standard neural
networks as basis, the method has no conflict with and can just
as well be used with other continual learning frameworks as basis
instead - particularly some established methods that require task
boundaries provide good candidates for such an integration [14, 22].

4 EXPERIMENTAL SETUP
4.1 Implementational details of the system
Policy: For the implementation of Proximal Policy Optimization
(PPO), we used Stable Baselines3. The default settings were kept.We
used CnnPolicy due to the image-based nature of the environments.
The optimizer used is Adam, with a learning rate of 3𝑒 − 4.

Autoencoder: We trained a convolutional autoencoder to recon-
struct environment observations. The convolutional autoencoder
for MiniGrid has input images of shape (7, 7, 3), uses two Conv2D
layers in the encoder (16 and 8 filters, 3x3 kernels, ReLU activa-
tion), each followed by 2x2 MaxPooling. The decoder employs
two Conv2DTranspose layers for upsampling, followed by a fi-
nal Conv2D layer (3 filters, sigmoid activation) to reconstruct the
original input. For Atari input images have shape (84, 84, 1) (down-
scaled and grayscaled from 210x160x3), uses two Conv2D layers
in the encoder (16 and 8 filters, 3x3 kernels, ReLU activation), each
followed by 2x2 MaxPooling to downsample. The decoder uses
two Conv2DTranspose layers for upsampling, followed by a fi-
nal Conv2D layer (1 filter, sigmoid activation) to reconstruct the
grayscale input. The models were optimized using the Adam opti-
mizer and a binary cross-entropy loss function, with early stopping
based on validation loss to prevent overfitting. The autoencoders



Figure 2: Overview of our system design. The system at any time is composed of a number of policy networks (three in this
example) and an autoencoder (AE) associated with each of them. (1) The agent obtains observations from the environment (as
images in our implementation). (2) The observations are passed as input to all autoencoders of all policy networks available for
them to attempt reconstruction. The error on each autoencoder’s reconstruction is computed. (3) If there are autoencoders
whose reconstruction errors are below automatically estimated reconstruction thresholds (see main text), then the policy
network associated with the autoencoder with the lowest reconstruction error is chosen (in this figure, that’s Policy 3, meaning
that AE-3 provided the lowest reconstruction error). If all reconstructions have errors above the threshold, this is interpreted as
the observation of an unrecognized environment. A new policy network and a new associated autoencoder are created for
training on this new task. (The illustrative reconstructions on this figure are actual in-operation outputs by our system, for
tasks corresponding to Minigrid’s Dynamic-Obstacles, Key-Door and Lava-Gap environments.)

were trained for up to 100 epochs with a batch size of 64, using
20% of the data for validation. Training and validation loss were
monitored and plotted to assess model performance. For the de-
sired confidence level to determine autoencoder reconstruction
thresholds, we used 90% in Minigrid experiments and 99% in Atari
experiments (we used a stricter threshold for Atari since they are
visually more similar).

We classify the observations (or identify them as new) and select
a policy network only once per episode, at the outset. This approach
assumes that there is no change in the environment during a single
episode, but only between episodes. However, this assumption can
be relaxed without altering our system design if the environment
is non-episodic.

4.2 Experiment details
In our experiments, we use Minigrid [8] and Atari environments
provided by the OpenAI/Gym toolkit [25]. We test with three envi-
ronment subtypes (i.e. tasks) from each domain: In Minigrid, we use
the variants Dynamic-Obstacles-8x8-v0 (Task T1), LavaGapS7-v0
(Task T2), and DoorKey-8x8-v0 (Task T3). In Atari, we test with
games Breakout (Task T1), Pong (Task T2), and BeamRider (Task

T3), all v5. All our results with Minigrid are averages of 8 runs, and
with Atari they are averages of 3 runs (the lower number of runs
was due to the computational cost of learning Atari environments
due to their high dimensionality). In all our experiments, the agent
gets observations as images (RGB for Minigrid, grayscale for Atari).
Since reward magnitudes differ greatly across tasks, reported per-
formances are normalized to the range of [0, 1], with normalization
limits determined by the highest and lowest rewards obtained by
the agent in the corresponding environment.

We conduct our experiments with an agent implementing our
design, referred to as the "AE-CL Agent" (short for "autoencoder
continual learning"), alongside a vanilla agent that utilizes a sin-
gle policy network for comparison. We do not include any addi-
tional baseline comparisons, as we are unaware of any comparable
continual reinforcement learning methods that can achieve con-
tinual learning without the external specification of task IDs or
new task information, or without replaying past samples. Compar-
ing our approach to methods that rely on these constraints would
not provide meaningful insights, as our primary objective is to
showcase the capability of our design to function without such



constraints. Moreover, we do not present this method as an alter-
native to existing techniques that operate under these assumptions
(e.g. [14, 22]); rather, it has the potential to work in conjunction
with them—especially those requiring task boundaries without au-
tomatic detection. Nothing in our design prevents an integration
with such existing approaches in place of standard neural networks
as policy basis as we use them, as discussed in detail on Sections 3
and 6.

4.2.1 Learning flow 1: Retrospective Performance. In this learning
flow, we specifically demonstrate the agent’s knowledge preser-
vation and retrieval performance on previous tasks. The agent is
sequentially exposed to each task, and after learning one task, it
is tested for average performance across all the tasks that it was
exposed to until that point. Specifically, the training and testing
process unfolds as follows:

(1) The agent is trained on the first task (T1). After learning T1,
the agent was tested on 30 episodes of T1 only.

(2) The agent is trained on the second task (T2). After learning
T2, the agent was evaluated on 60 episodes, split equally
between T1 and T2. The transitions between episodes were
random, with the environment selection (T1 or T2) chosen
randomly for each episode.

(3) The agent is trained on the second task (T3), and following
that the agent was tested across 90 episodes where the envi-
ronments (T1, T2, T3) were randomly selected. One-third of
the episodes were from each task (T1, T2, and T3).

This flow is visualized on Figure 3. We would like to reiterate
that at no point during the training process do we inform the agent
of a task change, the introduction of a new task, or which of the
previous tasks it is currently encountering.

Figure 3: Learning Flow 1 (Retrospective performance)

4.2.2 Learning flow 2: Ongoing Performance. In this learning flow
(visualized in Figure 4), we test the AE-CL agent’s performance
in a more natural, ongoing operation. We provide the agent with
a distinct environment at each step, and we track the net perfor-
mance of the agent across all these steps, without distinction across
tasks; arguably simulating a more natural scenario compared to the
retrospective evaluations in the first training flow. As congruent
with our assumption (Section 3), we assume that an environment
remains accessible until the convergence of the agent on that envi-
ronment. To test continual learning performance, both AE-CL and
Vanilla agents are trained on a given task only at their first expo-
sure to this task (note that AE-CL does this automatically, while
for Vanilla agent this was done manually).

Figure 4: Learning Flow 2 (Ongoing performance)

Agent Task 1 Task 2 Task 3
AE-CL 0.901 (0.013) 0.887 (0.007) 0.907 (0.004)
Vanilla 0.907 (0.013) 0.430 (0.003) 0.324 (0.001)

Table 1: Retrospective performances of AE-CL and Vanilla RL
agents on Minigrid. Displayed values under Task X are aver-
age rewards (normalized) across all tasks up to and including
Task X (e.g. the performance under Task 2 is the retrospective
performance on Task 1 and 2 combined). Tasks 1, 2 and 3
are DynamicObstacles, LavaGap and DoorKey environments
respectively. Results are averaged over 8 independent runs,
inside parentheses are standard deviations.

5 RESULTS AND DISCUSSION
5.1 Number of distinct poliy-autoencoder pairs

learned
In all our experiments we saw that the agent learned precisely three
policy-autoencoder pairs, without any tasks missed or without any
multiple unnecessary policy-autoencoder pairs for a single task.

5.2 Retrospective performance
Tables 1 and 2 present the retrospective performance evaluations for
the Minigrid and Atari environments, respectively. In all instances,
the AE-CL agent (our proposed design) demonstrates consistent
average performance across all tasks introduced up to that point.
For example, in the Atari environment (Table 2), the agent achieves
an average normalized reward of 0.945 across Tasks 1, 2, and 3
combined (after being trained on Task 3), which is nearly identical
to its original single-task performance of 0.951 on Task 1, despite
not being retrained on Tasks 1 and 2. In contrast, the Vanilla agent
experiences destructive adaptation, losing all knowledge of previous
tasks upon the introduction of a new one, resulting in a normalized
reward of approximately 1/X after task index X (i.e. achieving a
reward close to 1.0 on the latest task but around 0 for all prior tasks).



Agent Task 1 Task 2 Task 3
AE-CL 0.951 (0.026) 0.939 (0.010) 0.945 (0.007)
Vanilla 0.947 (0.026) 0.469 (0.006) 0.310 (0.002)

Table 2: Retrospective performances of AE-CL and Vanilla RL
agents on Atari. Displayed values under Task X are average
rewards (normalized) across all tasks up to and including
Task X. Tasks 1, 2 and 3 are Breakout, Pong and Beamrider
respectively. Results are averaged over 3 independent runs,
inside parentheses are standard deviations.

Figure 5 gives a different view on destructive adaptation of the
Vanilla Agent, where the performance on any prior task is seen to
have decayed to 0 after being trained on a new task. In contrast,
the AE-CL agent (Figure 6) retains original performance in prior
environments after being trained on new ones, showing no sign of
destructive adaptation.

Figure 5: Normalized rewards obtained by Vanilla agent dur-
ing retrospective performance evaluation at the three tasks.
Labels T1, T2 and T3 on x-axis signify the time of training on
the corresponding task, followed by subsequent evaluation
on tasks up to that point. The plot shows clear destructive
adaptation as performance in prior tasks are not retained.

The results on retrospective performances learning flow shows
that the AE-CL agent can accurately recognize new tasks and cor-
rectly assign observations from previously-encountered tasks to
their corresponding policy-autoencoder pairs, hence realizing con-
tinual learning without any external task change or new task sig-
nals.

5.3 Ongoing performance
Table 3 presents the average performance of the AE-CL agent during
ongoing performance evaluations across three tasks, demonstrat-
ing high average performance across trials after learning three
policy-autoencoder pairs during its initial encounters with each
environment (as discussed at the beginning of this section). In con-
trast, Vanilla agent once again shows a performance close to 1/3rd
of maximum performance, demonstrating that the knowledge of all
tasks but the latest-trained one are lost. Figures 7 and 8 illustrate

Figure 6: Normalized rewards obtained by AE-CL agent dur-
ing retrospective performance evaluation at the three tasks.
Labels T1, T2 and T3 on x-axis signify the time of training on
the corresponding task, followed by subsequent evaluation
on tasks up to that point. Performance retained without any
loss upon the introduction of new tasks.

Agent AE-CL Vanilla
Minigrid 0.895 (0.005) 0.283 (0.080)
Atari 0.942 (0.008) 0.319 (0.080)

Table 3: Net average rewards (normalized) of AE-CL and
Vanilla agents during ongoing evaluation. Results are av-
eraged over 8 independent runs for Minigrid and 3 runs for
Atari, inside parentheses are standard deviations.

this for 50 successive episodes randomly selected from our Min-
igrid experiments. The Vanilla agent (Figure 7) performs well in
approximately 1/3rd of episodes while completely failing at the rest.
AE-CL agent (Figure 8), on the other hand, achieves near-optimal
performance across all episodes except for one instance (episode
45), where the environment subtype was correctly identified as
LavaGap, but the agent failed due to an incorrect action taken by
the policy network (which is not unlikely in LavaGap environment,
since falling into lava cells by mistake results in immediate episode
termination). This indicates that the AE-CL agent is capable of ac-
curately detecting and classifying the environments it encounters
in an ongoing manner, retrieving relevant past knowledge, and
performing effectively based on that retrieval.

6 CONCLUSIONS
In this study, we proposed a training flow for continual learning
based on dynamically growing system capacity to avoid destructive
adaptation, combined with autoencoders for task assignment and
new environment detection. We showed that this simple design
can successfully detect new environments and accurately assign
observations to previously-encountered environments if they pro-
vide a match, hence enabling continual learning without requiring
external signals for neither of these tasks, and without requiring
storage of past training data. Our system design can be used either
as it is presented in this paper (with vanilla neural networks) or
it can be used in conjunction with other methods that typically



Figure 7: Normalized rewards obtained by the Vanilla agent
on Minigrid across 50 episodes during ongoing performance
evaluation. The environment subtype is chosen randomly at
each episode.

Figure 8: Normalized rewards obtained by the AE-CL agent
on Minigrid across 50 episodes during ongoing performance
evaluation. The environment subtype is chosen randomly at
each episode.

assume the existence of task boundaries, such as Progressive Neural
Networks [22] or Elastic Weight Consolidation [14].

6.1 Limitations
Our current design is tailored for detecting changes in the environ-
ment, signaled by shifts in the observation distribution, which af-
fects the autoencoder’s ability to accurately reconstruct the original
observation. The key constraint here, with respect to a fully gener-
alized continual learning setup, is the assumption that each new
learning task is linked to a novel environment. While this assump-
tion holds for many problem scenarios, in principle, a "task change"
could also be defined by a shift in the reward structure within the
same environment. Our framework can easily be adapted to ac-
commodate such cases by extending the autoencoder’s inputs and
outputs to include the rewards obtained by the agent. This would
allow the system to detect changes in both the reward structure
and the underlying observations, thereby generalizing its continual
learning capabilities.

While our method enables the learning of an arbitrary number
of tasks without destructive adaptation due to its ability to grow
capacity as needed, this also implies that memory requirements

may become substantial for very long-lived agents. Each environ-
ment/task is represented by a distinct policy-autoencoder network,
which presents a shared limitation across continual learning meth-
ods that increase capacity [12, 22]. Approaches that do not expand
capacity (e.g., [14]) circumvent this limitation; however, as dis-
cussed, they cannot continue learning indefinitely long sequences
of tasks due to their finite capacity. We believe that an effective
solution to this limitation lies in mechanisms that can incremen-
tally add partial capacity (such as network components, neurons,
or layers, rather than entire neural networks), which would help
control the increase in complexity, ideally following a logarithmic
trend as the capacity required decreases with the agent’s expanding
experience. This concept also ties into our discussion of transfer
learning in the subsequent subsection.

6.2 Future work
A key motivation for continual learning is knowledge transfer,
where knowledge gained from past tasks is used to enhance per-
formance on subsequent ones [29]. Our current system design and
experiments do not yet incorporate this possibility, as the agent
begins learning a new policy network and a new autoencoder with
each new task it encounters. However, the design can be extended to
integrate existing transfer learning techniques, allowing it to lever-
age prior knowledge from previous environments. One straight-
forward approach would be to initialize the policy network for a
new task using the network associated with the autoencoder that
best matched the new observation during reconstruction. We con-
ducted preliminary experiments with this transfer method but did
not report the results, as we observed no significant impact on
performance or training progression. This may be due to a lack of
similarity across environments in our experimental domain, where
it is more efficient to learn a new network from scratch than to
reuse an existing one. In scenarios with greater overlap between
tasks or environments, this transfer strategy could have a more
pronounced effect. Alternatively, it is possible that such a simple
transfer scheme is inherently ineffective, and more advanced trans-
fer learning techniques may be needed to effectively harness prior
knowledge and further enhance training - our method, currently
built on standard neural networks, can be easily extended to incor-
porate such alternative transfer learning approaches.

While our primary emphasis throughout this paper has been on
the quantitative performance of continual learning, it is important
to recognize that our method not only facilitates continual learning
without destructive adaptation but also decouples and represents
different tasks (currently represented as distinct environment sub-
types, but not necessarily limited to that, as previously discussed) as
isolated behavioral subunits. This aspect may be of particular inter-
est to researchers engaged in Hierarchical Reinforcement Learning
[19], which, among other objectives, seeks to represent distinct
components of an overall behavioral pattern as separate entities.
Although we did not explore this dimension of our system in this
study, we believe it presents a promising avenue for future research
for those interested in this field.
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