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ABSTRACT
Learning based approaches have been used to coordinatemultiagent
systems in a variety of settings. A key challenge in multiagent
learning is that agents are rewarded as a team, making it difficult
to determine which agents took helpful actions. Influence based
reward shaping helps address this by shaping each agent’s reward
signal to include credit for their actions as well as the actions
of teammates they influenced. However, this requires a domain-
specific definition of influence to determine who is influencing who,
which may not be straightforward to define. This work-in-progress
takes a step towards developing a domain-agnostic approach using
causal influence. Our preliminary results show that we can tease out
how one agent’s actions affect its teammate’s actions by simulating
counterfactual scenarios.
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1 INTRODUCTION
Multiagent learning has been applied to many domains to achieve
highly coordinated behaviors, including warehouse management
[4, 12], ocean monitoring [9, 10], and space exploration [13]. A key
challenge in multiagent learning is that the contributions of every
agent are mixed together in a single team reward. This makes it
necessary to determine who gets credit for what portion of the
team reward. Otherwise, each agent tries to optimize a noisy team
reward that its individual actions have little control over.

Reward shaping helps address this structural credit assignment
problem by isolating an agent’s impact on the team reward [2, 6, 11].
Indirect difference rewards in particular give each agent a shaped,
agent-specific reward based on that agent’s actions as well as the
actions of teammates it influenced. The core structure of the indirect
difference reward computes the difference between the team reward
and a counterfactual team reward that excludes the actions of an
agent and the teammates it influenced. This helps agents learn
to take actions to directly improve the team reward as well as
influential actions to support their teammates.

Unfortunately, this requires a domain-specific definition of influ-
ence to determine which teammates an agent is influencing. This
limits the application of indirect difference rewards to problems
where the type of influence necessary for high team performance
is known apriori. Figure 1 shows various influential behaviors that
a rover and drone team might discover. If we restrict the definition
of influence to only include some of these behaviors, then we may
miss helpful influential behaviors that we didn’t account for.
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Figure 1: A rover and drone team may discover a variety of
coordinated behaviors that require their actions to influence
one another. These might include following (A), amplifying
(B), mirroring (C), or spreading out (D). With a narrowly de-
fined influence heuristic, agents maymiss out on discovering
different types of influential behaviors.

This paper is a work-in-progress that takes a step towards devel-
oping a domain-agnostic influence heuristic for credit assignment.
Rather than defining a narrow heuristic and learning “influential”
policies based on this metric, we can borrow ideas from social influ-
ence to measure the impact of an agent’s action on its teammate’s
actions. The key insight of this preliminary work is that we can
tease out what influence means by sampling counterfactual actions
from an already coordinated team. This means moving forward we
may train agents to define influence more adaptively by inferring
what constitutes influence based on previous experiences.

Our contribution so far is an exploration of how we can deter-
mine if an agent is influencing its teammate using counterfactual
actions. We also include immediate next steps necessary to develop
and integrate a general influence measurement into reward shaping
based on causal influence. From an implementation perspective,
this makes influence based reward shaping heuristic free.

Preliminary results highlight how an agent’s state and action
distribution in a highly coordinated team can change drastically
based on a teammate’s influence. This suggests that causal influence
can effectively measure the impact of an agent’s influence without
domain knowledge. By integrating causal influence into a shaped
reward, we may bias agents towards exploring influential behaviors
to become part of a highly coordinated team.



2 BACKGROUND
2.1 Reward Shaping
Reward shaping techniques take a team reward and modify it for in-
dividual agents [1, 5]. Structural credit assignment becomes crucial
when many agents are interacting, as the team reward is the same
for all agents. This is regardless of each agent’s specific contribution,
making it poorly suited for individual agents.

2.1.1 Difference Rewards. Difference rewards address structural
credit assignment by providing an agent-specific reward that is
aligned with the team reward and sensitive to an individual agent’s
actions [1, 3]. By comparing the actual team reward with a coun-
terfactual team reward where that agent is removed from the team,
we can calculate a difference reward that captures that individ-
ual agent’s contribution to the team. A difference reward can be
computed according to the following equation.

𝐷𝑖 = 𝐺 (𝑇 ) −𝐺 (𝑇−𝑖 ) (1)

𝐷𝑖 is the difference reward for agent 𝑖 . 𝑇 is the joint trajectory
of the agents in the team.𝐺 (𝑇 ) is the team reward, and𝐺 (𝑇−𝑖 ) is a
counterfactual team reward where agent 𝑖’s states and actions are
removed from the joint trajectory. 𝐷 is effective when the removal
of an agent’s actions directly changes the team reward. However,
if removing this agent does not create an immediate difference
between the team reward and the counterfactual reward, then 𝐷

provides completely uninformative feedback. Influential actions
from an agent can affect the actions that its teammates take, but may
not directly affect the team reward. This means 𝐷 is not effective
for capturing and rewarding influence between agents.

2.2 Influence Based Reward Shaping
2.2.1 Indirect Difference Reward. Indirect difference rewards com-
bine an influence heuristic with the structure from difference re-
wards in order to give credit for indirect impacts [7]. Consider
agents that provide support to help teammates accomplish tasks,
but cannot accomplish any tasks themselves. These agents would
not receive any credit through 𝐷 because their actions do not di-
rectly impact the team reward. Instead these agents need to be
credited based on the direct impacts of the agents they influenced.
An indirect difference reward provides this credit using the follow-
ing equation.

𝐷𝐼𝑁𝐷𝑖 = 𝐺 (𝑇 ) −𝐺 (𝑇−𝐹𝑖 ) (2)
𝐷𝐼𝑁𝐷
𝑖

is the indirect difference reward for agent 𝑖 . The key dis-
tinction from the difference reward is the 𝐹𝑖 term. 𝐹𝑖 is a set of
agents whose states and actions are removed from the joint trajec-
tory. This is what makes it possible for agent 𝑖 to get credit for the
direct impacts of other agents. 𝐹𝑖 can be computed either statically
or dynamically. This means that either the same set of agents are
removed at each timestep, or influence can be recomputed at each
timestep so that a different set of agents are removed.

2.2.2 Influence Heuristic. In order to determine which teammates
an agent is influencing, we need a domain-specific heuristic. This
heuristic uses the joint-state to determine if one agent is influencing
another agent. Prior work has only considered a distance threshold
as an influence heuristic. If two agents are within that threshold,

then they count as influencing each other. Otherwise, they would
not count as influencing each other.

To determine the set of agents that are influenced by agent 𝑖 , we
would begin by looking at the joint state of all agents. We apply our
influence heuristic to each agent in the team. If it indicates that there
is influence between agent 𝑖 and another agent, then we add that
agent to the set 𝐹𝑖 . If we are determining 𝐹𝑖 dynamically, then we go
through this process at each timestep in the joint trajectory. If we
are instead determining 𝐹𝑖 statically, then we aggregate influence
across an entire joint trajectory, and only the agent that influenced
a teammate the most includes that teammate in 𝐹𝑖 .

2.3 Social Influence as Intrinsic Motivation
Previous work has used influence as an intrinsic motivation re-
ward to incentivize exploration [8]. This causal influence reward is
provided in addition to the environment reward at each timestep
based on the amount an agent shifts another agent’s action distribu-
tion. More concretely, if there are 2 agents, agent 𝑘 (the influencer)
and agent 𝑗 (the influencee), 𝑘’s causal influence can be calculated
according to the following equation:

𝑐𝑘𝑡 = 𝐷𝐾𝐿

[
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(3)

In this equation, since agent 𝑗 ’s policy is conditioned on its own
state as well as agent 𝑘’s action, 𝑗 ’s marginal policy (the right side)
can be derived by sampling counterfactual actions of agent 𝑘 . After
computing this, the impact of agent 𝑘’s action on the action taken
by agent 𝑗 can be computed using KL Divergence. This value is then
provided to agent 𝑘 along with its extrinsic environment reward so
the agent learns to take high-performing and influential actions that
enable other agents in the system to cooperate. The probabilities
necessary for these computations can be obtained centrally by using
each agent’s policy, or in a decentralized manner where each agent
maintains a model of the other agents.

There are two distinct drawbacks to using this intrinsic motiva-
tion reward in team settings. The first is that it rewards any type of
influence, regardless of whether that influence was beneficial to the
team. This means an agent could be rewarded for using its influence
to hinder teammates from improving the team reward. The second
is that it cannot promote influence in sparse team reward settings.
When only a minuscule subset of joint actions yield a non-zero
reward, agents’ action distributions are random. This means that an
agent can be incorrectly characterized as influencing its teammates
due to random action distributions, which would reward random
actions rather than coordinated actions.

3 METHODS
The goal of this research is to integrate causal influence into the
indirect difference reward in order to provide agent-specific re-
wards for various types of influential actions. By integrating causal
influence into a reward shaping framework, we can automatically
differentiate between helpful and spurious influence to ensure that
we are rewarding helpful influence. The shaped reward is derived



from the team reward, so if an influential action does not result
in a higher team reward, then it will not result in a higher shaped
reward. This section details the core concepts that are a work-in-
progress in this paper. We don’t include experiments for all of these
concepts because they are still in development.

3.1 Heuristic Free Influence
The indirect difference reward requires a domain-specific heuristic
to determine which teammates an agent influenced. This heuristic
limits the application and generalizability of indirect difference
rewards because it requires apriori knowledge of what interactions
between agents are necessary for effective coordination. We can
instead use causal influence as a general heuristic that is domain-
agnostic. Since this would be a general heuristic, it would no longer
be necessary to define a heuristic to use indirect difference rewards.
This means that from the perspective of setting up a team to learn
with indirect difference rewards, there is no heuristic, so this ap-
proach effectively becomes heuristic-free.

We can use 3 as an influence heuristic. Specifically, a threshold
value can be compared to the causal influence of an agent on a
teammate. If the causal influence is above the threshold, then we
consider that agent as influencing its teammate. To compute causal
influence, we can sample counterfactual actions in our environment.
This will initially require the re-simulation of agent actions, but
could be modified to use models of other agents instead.

3.2 Re-Simulating Influential Behaviors
Normally in reward shaping, there is no re-simulation of joint
policies. Neither the direct nor indirect difference reward require
joint policies to be re-simulated. When we remove agent states
and actions from a joint trajectory in reward shaping, we do not
re-simulate in order to see what the other agents would have done
differently. We simply recompute the team reward with a modified
joint trajectory. The reason we do not re-simulate joint policies in
reward shaping is because this breaks the theoretical guarantee
that the shaped reward will be aligned with the team reward.

For causal influence, we need to simulate the outcomes of dif-
ferent counterfactual actions. This means re-simulating the envi-
ronment to get either different joint actions or entirely new joint
trajectories. This may seem to present a conflict with reward shap-
ing, but if we walk through the alignment equations for the indirect
difference reward, we can see why this actually does not cause any
issues. The equations showing that the indirect difference reward
𝐷𝐼𝑁𝐷 is aligned with the team reward 𝐺 for any agent 𝑖 is shown
below.

𝜕

𝜕𝑖
𝐷𝐼𝑁𝐷𝑖 (𝑇 ) = 𝜕

𝜕𝑖
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𝜕𝑖
𝐺 (𝑇 ) − 0

=
𝜕

𝜕𝑖
𝐺 (𝑇 )

As long as 𝜕
𝜕𝑖𝐺 (𝑇−𝐹𝑖 ) = 0, then our alignment guarantee still

holds. When we re-simulate, we are not actually changing𝑇 in any
way.We are generating entirely separate joint trajectories or actions
that we only use to determine what agents we should include in
𝐹𝑖 other than agent 𝑖 . So long as we always include agent 𝑖 in 𝐹𝑖 ,
then these equations will remain true, and it doesn’t matter what
operations we take in order to determine the other agents that
should be included in 𝐹𝑖 .

We can take re-simulation a step further and not just re-simulate
a random sample of actions, but specifically bias our sampling
towards actions that have scored high in their causal influence
measurement in the past. One of the benefits of wrapping causal in-
fluence into the indirect difference reward is that we do not need to
worry about our agents prioritizing their influence over improving
the team’s performance. Only influence that has actually propa-
gated into a higher team reward will be rewarded in the shaped
reward. This means we can really focus on sampling influential
actions to promote higher influence scores without fear of leading
our agents away from optimizing their shared team reward.

4 EXPERIMENT SETUP
4.1 Random POI Capture Problem
We run simulations in a 2D multiagent particle domain. This do-
main requires the coordination of a rover and a drone to capture
a randomly spawning point of interest (POI). The team reward is
computed based on how close the rover gets to the POI, but the
rover cannot detect the POI. Instead, the drone has the sensors
necessary to detect the POI, and the rover must rely on detecting
the drone in its limited observation radius to guide it to the POI. We
experiment with this particular domain because agents must rely
on each other’s influence in order to achieve a high team reward.

The rover is outfitted with low resolution sensors to detect the
drone. The sensors split a rover’s observation radius into 4 quad-
rants. The input for a single sensor is shown below, where 𝑖′ itera-
tively represents all of the drones in a quadrant that are within the
observation radius of the rover. In our experiments there is either
one drone or no drones in a quadrant.

𝑆𝐴𝐺𝐸𝑁𝑇 =
∑︁
𝑖′

1
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑖, 𝑖′) (4)

The drone is outfitted with corresponding rover sensors to detect
the rover as well as low resolution POI sensors. POI sensing is
computed similarly to agent sensing, as shown below, where 𝑗

iteratively represents all the POIs in a quadrant that are within the
observation radius of a drone. In our experiments there is either
one POI or no POIs in a quadrant.

𝑆𝑃𝑂𝐼 =
∑︁
𝑗

1
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑖, 𝑗) (5)

The rover and drone take [dx,dy] actions in the environment
to move around and interact with each other. The team reward
is computed based on how close the rover gets to the POI. Note
that team reward is not affected by how the drone moves; it is
only directly dependent on the rover. The drone cannot capture the
POI. The team reward is captured by the evaluation function in the
equation below.



Figure 2: Two joint trajectories are shown side-by-side. The blue line represents the path taken by the rover, and the purple line
represents the path taken by the drone. The blue circle represents the POI. (A) The drone and rover start at (25, 15) and the
drone guides the rover to the POI. (B) The drone is frozen in place, so the rover simply stays next to the drone. From these joint
trajectories, it is clear that the rover depends on the drone’s influence to capture the POI, and no heuristic was necessary in
order for us to draw this conclusion.

𝐺 (𝑇 ) = max
𝑡

( 𝐼 (𝑖, 𝑗)
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑖, 𝑗) ) (6)

For POI 𝑗 , we check how close rover 𝑖 was at any point in time 𝑡 .
The indicator function 𝐼 returns 1 if rover 𝑖 was within the capture
radius of POI 𝑗 at time 𝑡 and 0 otherwise. A high reward means
that a drone guided its rover to successfully capture the POI. It is
important to note that it is possible for a rover to wander away
from a drone and capture a POI on its own.𝐺 does not require the
drone and rover to capture the POI together. However, the rover has
no sensors to detect POIs, so as soon as a rover no longer detects
any of its teammates within its observation radius, it is wandering
blindly in the environment.

4.2 Domain Setup
The rover’s observation radius is 5, and the drone’s observation
radius is 100. The POI’s capture radius is 5. Both agents have a
maximum dx and dy of 1, and minimum dx and dy of -1.

The rover and drone begin at the (x,y) position (25,15) in a 50x50
map. The POI is randomly placed along the edge of a circle that
surrounds the agents. This circle is centered at (25,15) and has a
radius of 10. That means the POI is always placed 10 units away
from the team, and the POI can be placed at any angle relative to
the team. The team has 50 timesteps for the rover to reach the POI.

In our experiments, the team uses pre-trained neural network
policies such that the drone will guide the rover to the POI. These
policies are pre-trained using the indirect difference reward, and a
distance based influence heuristic.

4.3 Impact of Freezing the Drone
We run 50 rollouts of these pre trained policies where the POI can
spawn in random locations, and the agents have full autonomy. Full
autonomy means that both agents can take actions according to
their policies. We run an additional 50 rollouts with the same POI
spawn locations, but this time, we freeze the drone. This means
that the rover is free to take actions according to its policy, but the
drone cannot take any actions. Instead, the drone remains frozen
in its spawn location.

This gives us plenty of joint trajectories to help us determine
how the drone influences the rover. If the rover takes the same
actions regardless of whether or not the drone is frozen, then it
will be clear that the rover is not influenced by the drone. However,
if we see drastic changes in the rover’s actions when the drone
is frozen, then this gives us some insight as to what the indirect
difference reward was incentivzing. This would indicate that in fact
the drone learned to influence the rover and the rover learned to
depend on the drone.

5 PRELIMINARY RESULTS
We break down our preliminary results into three parts.

(1) Joint Trajectories
(2) Rover State Distributions
(3) Rover Action Distributions

5.1 Joint Trajectories
The joint trajectory of the rover and drone is greatly affected by
whether or not the drone is frozen. We can see in Figure 2 two joint



Figure 3: The rover’s state distribution is shown as a scatter plot, where each point represents a position that the rover was in
during all 50 rollouts. The more shaded a point is, the more frequently the rover visited that particular state. (A) When the rover
can work with the drone, the rover visits many points in its state space. The rover especially visits points that along the edge of
where the POI spawns, as well as points that lead to the POI. (B) When the drone is frozen, the rover only visits a few states
repeatedly near its initial spawn point. We can see the rover’s behavior is quantitatively different without the drone’s support.

trajectories that are representative of how the team behaves when
the drone can guide the rover normally (A), and when the drone
is frozen in place (B). The rover clearly depends on the drone’s
influence in order to capture the POI, and we can see this from the
change in the rover’s behavior once the drone was frozen. These
two joint trajectories are representative of all 50 random spawn
locations for the POI. In any case where the drone can move, the
drone successfully guides the rover to the POI. Conversely, when
the drone is frozen, the rover stays near the starting location. We
already know this team has a high performing joint policy. The
fact that we can run these counterfactual simulations and get very
different team behaviors suggests that causal influence may tease
out a more complete picture of how these agents influence each
other.

5.2 State Distributions
We can see the effect of the drone on the rover’s state distribution
in Figure 3. When the drone is able to move according to its policy,
the rover can follow the drone throughout the map. Specifically, we
can see there is a concentration of points around the edge of where
the POI spawns. That means that the rover spends a lot of time in
places the POI spawns when the drone can guide it. When we freeze
the drone, we see a massive reduction in the spread of states visited
by the rover. The rover only visits four states when the drone is
frozen, and they are all around the spawn point. This is because
the rover is still trying to follow the drone, even though the drone
isn’t moving. The result is that the rover just bounces between a
few states. The stark contrast in the rover’s state distribution when

the drone is frozen suggests that we can quantitatively measure
the influence an agent has on its teammate without resorting to a
domain-specific heuristic. We don’t need to know anything domain-
specific for us to see the impact of the drone’s actions on the rover’s
state distribution.

5.3 Action Distributions
Casual influence tends to focus on actions, not states, so in Figure
4, we see the effect of freezing the drone on the rover’s action
distribution. The rover takes many different actions when the drone
is able to guide it around, but takes the same four actions repeatedly
when the drone is frozen. This is the type of impact that casual
influence should help us measure. In the case of the frozen drone,
we are only sampling one counterfactual action for the drone. That
action is setting (dx,dy) to (0,0). Casual influence should give us a
more complete picture of the relationship between the rover and
the drone because it uses a greater variety of counterfactual actions
as samples.

6 DISCUSSION
This work-in-progress suggests that the influence necessary for
a highly coordinated team may be measurable without any do-
main knowledge. Preliminary results show that an agent’s state
and action distribution can change drastically in response to coun-
terfactual actions from a teammate. The immediate next step is to
use causal influence as a measurement for influence during train-
ing. In order to replace the influence heuristic, this measurement
must output 1 if an agent is influencing a teammate and 0 if not.



Figure 4: The rover’s action distribution is shown as a scatter plot, where each point represents an action the rover took during
all 50 rollouts. The more shaded a point is, the more frequently the rover took that action. (A) When the rover can work
with the drone, the rover takes a variety of actions, and there is even a spectrum of actions the rover takes ranging from its
maximum delta x and y values to more fine tuned movements. (B) When the drone is frozen, the rover takes the same four
actions repeatedly, and there is no precision in the rover’s movements. The rover is taking the maximum steps it can at each
timestep. This is the type of discrepancy that casual influence could help us quantify for a shaped reward.

Since causal influence is not a binary measurement, we will apply
a threshold to turn its output into a 0 or 1. We can use this mea-
surement to determine which teammates an agent influenced and
compute an influence based shaped reward that is heuristic-free.

This work additionally opens the door to broader research di-
rections in terms of how we should be measuring influence for
shaped rewards. Causal influence is just the first step. Agents might
instead only use causal influence at the beginning of training, and
then learn a narrower definition throughout training as they fig-
ure out their particular role on the team. Similarly, agents might
combine an influence-based exploratory reward with their shaped
reward in order to better balance exploring influential behaviors
with their teammates and exploiting high performing behaviors.
These research directions would make agents learn more adaptive
definitions of influence to improve their coordination across a vari-
ety of domains, each requiring unique interactions to achieve high
team performance.
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