
Multicopy Reinforcement Learning Agents
Alicia P. Wolfe. Oliver Diamond, Brigitte Goeler-Slough,
Remi Feuerman, Magdalena Kisielinska, Victoria Manfredi

Wesleyan University
Middletown, CT, United States

pwolfe,odiamond,bgoelersloug,rfeuerman,mkisielinska,vumanfredi@wesleyan.edu

ABSTRACT
Inspired by the problem of optimal packet duplication in Mobile
Wireless Networks, this paper examines a specific type of coop-
erative multi-agent problem in which an agent makes multiple
identical copies of itself in order to achieve a noisy and difficult sin-
gle agent task more reliably or efficiently. The agent must balance
the cost of sending more copies with the improvement in speed
or success rate generated by the extra copies. Due to the space of
possible joint reward functions, this specific case has some differ-
ences from the more general cooperative multi-agent problem. We
propose a learning algorithm for this multicopy problem which
takes advantage of the structure of the value function to efficiently
learn how to balance the costs and benefits of adding additional
copies.

KEYWORDS
Multiagent Reinforcement Learning, Cooperative Agents, Wireless
Networks

1 INTRODUCTION
This paper introduces a new type of multiagent problem, in which
a single agent duplicates itself to achieve a single goal with greater
speed, quality or reliability. While this problem can be cast as a
specific case of cooperative agents (for algorithms in which the
number of agents can be optimized), the problem has properties
that lend themselves to solutions that are tuned for this scenario.

In most multi-agent domains, agents either cooperate or com-
pete to achieve their goals [1, 6, 25]. This paper seeks to address a
different type of multi-agent scenario, one in which agents dupli-
cate themselves to combat noise and risk in the problem domain.
One such domain is packet forwarding in mobile wireless networks,
where duplicate packets have been shown to improve reliability
and reduce delay [19]. Other domains include robot search and
rescue, where duplicate agents may improve performance.

We assume that, in a noiseless and no risk environment, the
task at hand could be completed by a single agent following an
optimal policy.We further assume that if additional agents complete
the task, this does not improve the outcome. However, actions are
so noisy that even an agent behaving optimally has a nontrivial
chance of failure. In this case, an agent may duplicate itself and
make several attempts concurrently to achieve the goal. This agent
must balance two factors: the cost of adding more copies vs the
increase in performance due to replication. In this case, the reward
function factors into a cost portion, which is summed over all agents,

Proc. of the Adaptive and Learning Agents Workshop (ALA 2025), Avalos, Aydeniz,
Müller, Mohammedalamen (eds.), May 19 – 20, 2025, Detroit, Michigan, USA, ala-
workshop.github.io. 2025.

and an optimization portion, which is taken from only the highest
performing agent. This restricts the form of the reward function of
what is otherwise a cooperative multiagent setting.

We also assume that communication between agents is prohibi-
tively expensive, except at the point where agent copies are made.
When copies are made the agent(s) may jointly decide how many
copies to make and what combination of actions to take: whether
to take the same action with multiple copies or a range of actions
to diversify the copies. After this point, we assume that noise in
the domain will suffice to produce a diverse set of outcomes for
different copies.

2 APPLICATION TOWIRELESS NETWORKS
In Mobile Wireless Networks, particularly sparse networks, there
are cases in which not all packets make it to their destination within
a reasonable time frame [10]. A mobile wireless network can be
viewed as a dynamic graph over a time. In a dynamic network,
contiguous paths from a source to a destination may exist instanta-
neously or only across time. In this situation it can be useful to send
more than one copy of a packet [19], so that at least one copy gets
to the destination in a reasonable time frame. We have designed
our test bed to duplicate this scenario in some respects.

As in [12], we treat each packet as an agent moving through an
environment made up of devices. There are some properties of the
Wireless Network we have constructed our gridworld to match:
messages/agents must travel from a source to a goal point; only
one copy of the agent must reach the goal for success and success
among the copies varies due to noise in the environment.

To construct a simple gridworld in which to test our algorithms,
we made some simplifying assumptions: we use tabular states and
actions rather than feature based RL with machine learning; in the
mobile network, the available actions will change as device neigh-
bors change, whereas in our gridworld the action set in each state is
fixed; and packets affect each other indirectly through congestion
in the network: actual network data will include features that reflect
current network congestion levels, but no such effect is modeled in
our test scenario.

3 REINFORCEMENT LEARNING
Reinforcement Learning (RL) assumes an agent existing in an envi-
ronment which can be represented by a Markov Decision Process
(consisting of states 𝑆 , actions 𝐴, and transition probabilities be-
tween states) [20]. The agent seeks to maximize a reward signal
over sequential, extended time interaction with the environment.

To do this, the agent must maximize return. For episodic tasks
the return at time 𝑡 is defined as the sum of discounted rewards



from 𝑡 to the end of the episode (𝑇 ):

𝐺𝑡 = 𝑟𝑡 + 𝛾 · 𝑟𝑡+1 + · · · + 𝛾𝑇−𝑡𝑟𝑇 (1)

where 𝑟𝑡 is the reward observed at time 𝑡 , and 𝛾 is a discount
between 0 and 1 on future rewards. This return definition can be
written recursively:

𝐺𝑡 = 𝑟𝑡 + 𝛾 ·𝐺𝑡+1 (2)

The action value function, which is used to choose actions, can
be written as a function of the expected value of the return:

𝑄 (𝑠, 𝑎) = 𝐸 [𝐺𝑡 | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (3)

where 𝑆𝑡 is the state at time 𝑡 and 𝐴𝑡 is the action at time 𝑡 .

4 BEST ACTIONS VS BEST MULTIACTION
Combining the cost reward for our agent copies is a straightforward
sum. The optimization reward, on the other hand, is maximized
over all agent copies, resulting in more interesting behavior. When
splitting into multiple copies, the agent may choose a set of imme-
diate actions for the copies to take. Always including the action
with the highest individual expected value may seem best. How-
ever, a combination of actions with high expected values but low
variances can lead to worse outcomes than a combination with
lower expected values but higher variance.

Consider a simple Multiarmed Bandit [20] problem with two
arms, arm Stable (S): normal distribution with 𝜇 = 10, 𝜎 = 1 and
arm Noisy (N): normal distribution with 𝜇 = 5, 𝜎 = 30. To get the
expected return of action sets like (S, N), we can generate samples
from both distributions and take the max of the samples. Mean
optimization reward returned by combinations of up to 2 arms after
10,000 samples are shown in Table 1, rounded to whole numbers.
Action (N, N) is the best 2-action combination, despite action N

Table 1: Max of stable (S) and noisy (N) normal distributions.

Action S N (S,S) (S,N) (N,N)

Est. Val. 10 5 11 20 22

having a lower expected value. Due to higher variance, two copies
of arm N are more likely to generate at least one high return.

In Table 2 we can see the same experiment for a bandit in which
in which a mix of two different distributions is best: the two arms
are a constant (C) with value 100, and exponential (E) 𝑒𝑥𝑝 (1/70).
Here (C, E), a stable distribution combined with a noisy distribution

Table 2:Max of constant (C) and exponential (E) distributions.

Action C E (C,C) (C,E) (E,E)

Est. val. 100 70 100 116 104

provides the best expected maximum.

Figure 1: Shadowed Equilibrium Example.

5 COOPERATIVE MULTIAGENT RL
Multiagent Reinforcement learning often starts by considering an
idealized MDP that uses the cross product of the states and actions
of each agent in a set of agents. In the case of cooperating agents,
the agents optimize a joint reward function in this multi-agent MDP
[1]. Work in multi-agent RL typically uses function approximation
to simplify the large joint state space, or uses a view of the joint
state that is only partially observed by each agent or small group of
agents, as in e.g. Khorasgani et al. [11], Schroeder de Witt et al. [18].
We instead begin by examining whether we need to consider the
joint state and action space at all. Once copies have been created,
they independently work to achieve the goal to the best of their
ability. As we will see in Section 7, there is no coordination needed
outside joint actions in states where copying occurs.

Shadowed Equilibria.Multicopy RL shares the problem of shad-
owed equilibria [5, 16] with more general cooperative RL scenarios,
however, the problem occurs differently. Consider the exampleMDP
shown in Figure 1. In a general cooperative setting we can construct
a shadowed equilibrium as follows: (1) place two agents at states
𝑆1 and 𝑆2; (2) set the reward on the action combinations to, e.g.:
(𝑎∗1, 𝑎

∗
2) = 10, (𝑎1, 𝑎2) = 5, (𝑎∗1, 𝑎2) = 1, (𝑎1, 𝑎∗2) = 1; and (3) have

many 𝑎1 and 𝑎2 distractor actions available. In algorithms where
the two agents act independently, during random exploration, 𝑎1
will have better estimated value than 𝑎∗1 because both are more
likely to be paired with one of the 𝑎2 distractors. Similarly, 𝑎2 will
have better estimated value than 𝑎∗2. Once the action combination
(𝑎1, 𝑎2) has been learned, the agent is stuck: trying 𝑎∗1 or 𝑎

∗
2 looks

even worse than during random exploration.
To construct this scenario in our optimization reward case, we

cannot simply set the rewards: they are set indirectly through the
maximization of of individual action reward distributions. However,
we can indirectly construct reward distributions for the 4 actions by
modifying the example from Table 2. Higher mean distributions go
to the starred actions: 𝑎∗1 = 110, 𝑎∗2 = 10+𝑒𝑥𝑝 (1/70). Lower distribu-
tions go to the distractor actions: 𝑎1 = 100, 𝑎2 = 𝑒𝑥𝑝 (1/70). When

Table 3: High and low mean constant and exponential distri-
butions.

Action (𝑎∗1, 𝑎2) (𝑎∗1, 𝑎
∗
2) (𝑎1, 𝑎2) (𝑎1, 𝑎∗2)

Est. Val. 110 127 117 111

we combine these distributions and take the expected maximum,
constants combined with exponentials give the highest values, as
shown in Table 3. This satisfies the requirements for a shadowed
equilibrium to occur when there are enough distractor actions.



6 BASELINE MULTIAGENT ALGORITHM
As a baseline to compare to our algorithm (see Section 7), we imple-
mented a multiagent solution with a basic commuication protocol
and reward function, referred to as the Joint Action Multiagent
algorithm. As a standard multiagent problem, the task has the fol-
lowing properties: (1) Agents may only communicate when they
split into multiple copies. (2) Only the best agent to achieve the goal
gets the reward for doing so. (3) All agents accumulate cost rewards.
This means that while the overall task is cooperative, individual
agents compete to best achieve the goal.

While this reward function accurately reflects the task, the re-
ward received by an agent depends on the other agents: if agent
copy 2 does better at the task, then agent copy 1 receives no re-
ward for success. Therefore, the number of copies made and the
actions they took in the splitting state affect the value function
for each agent. Each agent must remember the joint action chosen
at the start state, or operate in a POMDP. If 𝑛 agents choose the
action set {𝑎0, 𝑎1, . . . , 𝑎𝑛} in the start state, then at every state 𝑠 in
the episode we add this information to the state, forming the aug-
mented state (𝑠, (𝑎1, 𝑎2, . . . 𝑎𝑛)). Once the state space is augmented,
each agent runs q-learning with a shared value function between
all agents. When calculating the value of a candidate set of actions
(𝑎1, 𝑎2, . . . 𝑎𝑛), the values for each individual action in the context
of the joint action are summed. The action combination with the
highest value is chosen. From that point forward, the agents act
independently, even if they are on similar paths.

7 MULTICOPY ACTIONS
Ideally, we’d like each agent to attempt the task to the best of its
ability, despite the presence of other copies. We would therefore
like to consistently reward each copy for learning to achieve the
goal. However, when calculating the value of a joint action, we
should only include the optimization reward received by the best
copy. Our algorithm does so, and allows us to treat the domain as
an MDP without remembering the joint action chosen.

We divide the reward function into two portions: cost, which
reflects the additive costs of running more copies; and optimization,
which reflects the improvements in success with additional agent
copies. The algorithm should find the best trade-off between the
two.

At certain states the agent may make up to 𝑛 copies of itself. In
state 𝑠 , considering multi-actions that include up to 𝑛 actions, the
set of multi-action combinations available is the set of multisets of
cardinality less than 𝑛 that can be formed from the set of actions:

M(𝑠) =
𝑛⋃

𝑘=1

((
A(𝑠)
𝑘

))
(4)

whereA(𝑠) is the set of actions available at 𝑠 . In some experiments
we remove multi-actions with duplicate actions from consideration,
while in others we include them.

The agent starts with a single copy, agent 0. If a copy 𝑖 chooses
multiaction𝑚𝑡 at time 𝑡 , each agent copy produced is assigned a
unique id. Define 𝐼𝐷𝑡 to be the set of unique agent ids at time 𝑡 ,
and 𝐼𝐷𝑡 (𝑖) to the the set of agent ids that are created from agent 𝑖
at time 𝑡 .𝑚𝑡 consists of a set of actions 𝑎𝑖 𝑗 indexed by the original

agent 𝑖 and the agent 𝑗 which results from the action:𝑚𝑡 = {𝑎𝑖 𝑗 |
𝑗 ∈ 𝐼𝐷𝑡 (𝑖)}.

Return Definition for Multiple Actions. Our goal is to avoid
using multi-sets of next states to tabulate the value function, and
to use multi-sets of actions only in states where duplication of
the agent is considered. We consider problems where the total
sample return 𝐺 (𝑡, 𝑖) for agent 𝑖 at time 𝑡 can be factored into two
components, the cost return 𝐺𝑐 (𝑡, 𝑖) and the optimization return
𝐺𝑜 (𝑡, 𝑖):

𝐺 (𝑡, 𝑖) = 𝐺𝑐 (𝑡, 𝑖) +𝐺𝑜 (𝑡, 𝑖) (5)

Costs are summed across all copies of the agent. Let 𝑅𝑐 (𝑡, 𝑖) be
the cost reward at time 𝑡 for agent 𝑖 , and 𝐺𝑐 (𝑡, 𝑖) be the cost return
for agent 𝑖 at time 𝑡 . The return for agent 𝑖 at time 𝑡 can be written
in terms of the return for the set 𝐼𝐷𝑡 (𝑖) of agent copies created:

𝐺𝑐 (𝑡, 𝑖) =
∑︁

𝑗∈𝐼𝐷𝑡 (𝑖 )
[𝑅𝑐 (𝑡, 𝑗) + 𝛾𝐺𝑐 (𝑡 + 1, 𝑗)] . (6)

In episodic problems, different agent copies may finish at differ-
ent times.𝐺𝑐 for each agent ends at𝑇 (𝑖), the last timestep in which
that agent is active:

𝐺𝑐 (𝑇 (𝑖), 𝑖) =
∑︁

𝑗∈𝐼𝐷𝑇 (𝑖 ) (𝑖 )
𝑅(𝑇 (𝑖), 𝑗) . (7)

Optimization rewards are only counted on the “best" path found.
Therefore at each timestep they are maximized over the returns
from the next timestep. Let 𝑅𝑜 (𝑡, 𝑖) be the optimization reward at
time 𝑡 for agent 𝑖 , and 𝐺𝑜 (𝑡, 𝑖) be the corresponding optimization
return. When calculating overall optimization reward for the set of
agent copies, we only count the best agent’s return:

𝐺𝑜 (𝑡, 𝑖) = max
𝑗∈𝐼𝐷𝑡 (𝑖 )

[𝑅𝑜 (𝑡, 𝑗) + 𝛾𝐺𝑜 (𝑡 + 1, 𝑗)] . (8)

𝐺𝑜 for agent 𝑖 ends at 𝑇 (𝑖), the last timestep in which 𝑖 is active:

𝐺𝑜 (𝑇 (𝑖), 𝑖) = max
𝑗∈𝐼𝐷𝑇 (𝑖 ) (𝑖 )

𝑅(𝑇 (𝑖), 𝑗) . (9)

Policy Evaluation for Multiple Actions. The value of mul-
tiaction𝑚 in state 𝑠 is its expected value, at any time steps where
𝑠,𝑚 is experienced:

𝑄 (𝑠,𝑚) = 𝐸
[
𝐺 (𝑡, 𝑖) | 𝑆𝑡,𝑖 = 𝑠, 𝑀𝑡,𝑖 =𝑚

]
(10)

= 𝐸
[
𝐺𝑐 (𝑡, 𝑖) +𝐺𝑜 (𝑡, 𝑖) | 𝑆𝑡,𝑖 = 𝑠, 𝑀𝑡,𝑖 =𝑚

]
(11)

where 𝑆𝑡,𝑖 is the state at time 𝑡 for agent 𝑖 , and 𝑀𝑡,𝑖 is the multi-
action at time 𝑡 for agent 𝑖 .

This expectation factors into the sum of the cost expectation and
the optimization expectation:

𝑄 (𝑠,𝑚) = 𝐸
[
𝐺𝑐 (𝑡, 𝑖) +𝐺𝑜 (𝑡, 𝑖) | 𝑆𝑡,𝑖 = 𝑠, 𝑀𝑡,𝑖 =𝑚

]
(12)

= 𝐸
[
𝐺𝑐 (𝑡, 𝑖) | 𝑆𝑡,𝑖 = 𝑠, 𝑀𝑡,𝑖 =𝑚

]
+ (13)

𝐸
[
𝐺𝑜 (𝑡, 𝑖) | 𝑆𝑡,𝑖 = 𝑠, 𝑀𝑡,𝑖 =𝑚

]
(14)

where 𝑆𝑡,𝑖 is the state of agent 𝑖 at time 𝑡 , and𝑀𝑡,𝑖 is its multiaction.
This factors into a value function for cost, 𝑄𝑐 , and a value func-

tion for optimization, 𝑄𝑜 :

𝑄 (𝑠,𝑚) = 𝑄𝑐 (𝑠,𝑚) +𝑄𝑜 (𝑠,𝑚) (15)



The cost q-function factors further, into a sum of q-values for indi-
vidual actions 𝑎 ∈𝑚:

𝑄𝑐 (𝑠,𝑚) = 𝐸
[
𝐺𝑐 (𝑡, 𝑖) | 𝑆𝑡,𝑖 = 𝑠, 𝑀𝑡,𝑖 =𝑚

]
(16)

= 𝐸


∑︁

𝑗∈𝐼𝐷𝑡 (𝑖 )
𝐺𝑐 (𝑡, 𝑗) | 𝑆𝑡,𝑖 = 𝑠, ∈ 𝑀𝑡,𝑖 =𝑚

 (17)

If 𝐴𝑡, 𝑗 is defined as the individual action that produces agent copy
𝑗 at time 𝑡 , then this becomes:

=
∑︁
𝑎∈𝑚

𝐸
[
𝐺𝑐 (𝑡, 𝑗) | 𝑆𝑡,𝑖 = 𝑠, 𝐴𝑡, 𝑗 = 𝑎

]
(18)

=
∑︁
𝑎∈𝑚

𝑄𝑐 (𝑠, 𝑎) (19)

Therefore, for 𝑄𝑐 we can use any learning technique, including
bootstrapping methods like Q-learning [20, 24] or SARSA [17, 20]
to learn the Q-function for individual actions, and sum for multiac-
tions.

𝑄𝑜 cannot be simplified in the same way, as the expected value
and maximization do not commute in general:

𝑄𝑜 (𝑠,𝑚) = 𝐸

[
max

𝑗∈𝐼𝐷𝑡 (𝑖 )
𝐺𝑜 (𝑡, 𝑗) | 𝑆𝑡,𝑖 = 𝑠, 𝑀𝑡, 𝑗 =𝑚

]
(20)

Here we must learn𝑄𝑜 for each combination of actions we consider.
However, within the maximization step each 𝐺𝑜 may be calculated
individually, allowing us to avoid a value function defined over the
cross-product of states. If we are estimating𝐺𝑜 over multiple times
steps this does limit us to techniques which can be used without
bootstrapping like Markov Chain Monte Carlo [20].

Policy Improvement. When calculating the best action, the
agent should optimize the total value:

𝜋 (𝑠) = argmax
𝑚

𝐸
[
𝐺𝑐 (𝑡, 𝑖) +𝐺𝑜 (𝑡, 𝑖) | 𝑆𝑡,𝑖 = 𝑠, 𝑀𝑡,𝑖 =𝑚

]
. (21)

This function cannot be maximized separately over cost and opti-
mization values, therefore action selection must be done using the
joint value function and its policy.

Multicopy agent. The multicopy agent combines a cost agent
(𝑄𝑐 ), and an optimization agent (𝑄𝑜 ), and sums their values to
calculate the joint multicopy policy 𝜋 .

Cost and Optimization Agents. The cost agent estimates 𝑄𝑐

for each state 𝑠 and individual action 𝑎 using Q-learning. To calcu-
late the value of a multiaction𝑚, these are summed. The optimiza-
tion agent estimates 𝑄𝑜 for each state 𝑠 and multiaction𝑚, using
Every Visit Markov Chain Monte Carlo [20].

8 GRIDWORLD DOMAINS
The testing domains were chosen to examine the ability of the
Multicopy agent to adapt the number of agent copies and the actions
those copies take to improve performance under various levels of
noise and cost.

Gridworld Environment. To model tasks with varying risk, de-
lay and cost in a simple domain, we use a set of gridworld bridges of
varying length and width, shown in Figure 2a. This is an expanded
version of a single bridge gridworld from the Pacman Projects [4].
Falling off a bridge represents task failure, and successfully making
it across any bridge represents task success.

E
N
S

W E
N
S

W E
N
S

W E
N
S

W

E
N
S

W E
N
S

W E
N
S

W E
N
S

W

E
N
S

W E
N
S

W E
N
S

W E
N
S

W E
N
S

WE
N
S

W

E
N
S

W E
N
S

W E
N
S

W E
N
S

W E
N
S

WE
N
S

W

-10E
N
S

W E
N
S

W E
N
S

W E
N
S

W E
N
S

W E
N
S

WE
N
S

W

E
N
S

W E
N
S

W E
N
S

W E
N
S

W E
N
S

W E
N
S

WE
N
S

W

-10 E
N
S

W E
N
S

W E
N
S

W E
N
S

W E
N
S

W E
N
S

WE
N
S

W

-10 E
N
S

W E
N
S

W E
N
S

W E
N
S

W E
N
S

W E
N
S

WE
N
S

W

-10

-10

-10

-10

-10

-10

500 500 500 500

500

500 500

A B C

-10 -10

-10 -10

-10

-10

-10

-10

-10

-10

-10

-10

-10

-10

-10

-10

-10

-10

-10

-10

-10

-10

-10

-10

-10

-10

-10

(a) Three Bridges: quick, risky bridge (A); slow, safe bridge (B);
medium bridge (C).

E
N
S

W E
N
S

W E
N
S

W E
N
S

W

E
N
S

W E
N
S

W E
N
S

W E
N
S

W

E
N
S

W E
N
S

W E
N
S

W E
N
S

W E
N
S

WE
N
S

W

E
N
S

W E
N
S

W E
N
S

W E
N
S

W E
N
S

WE
N
S

W

-10E
N
S

W E
N
S

W E
N
S

W E
N
S

W E
N
S

WE
N
S

W

E
N
S

W E
N
S

W E
N
S

W E
N
S

W E
N
S

WE
N
S

W

E
N
S

W E
N
S

W E
N
S

W E
N
S

W E
N
S

W E
N
S

WE
N
S

W

-10 E
N
S

W E
N
S

W E
N
S

W E
N
S

W E
N
S

W E
N
S

WE
N
S

W

-10

-10

-10

-10

-10

-10

500 500 500 500

500 500

A B C

-10

-10 -10

-10

-10

-10

-10

-10

-10

-10

-10

-10

-10

-10

-10

-10

-10

-10

-10

-10

-10

-10

-10

-10

-10

(b) Bridges Gridworld with one broken bridge (A). The broken
bridge is randomly chosen per episode.

Figure 2: Three-bridge gridworlds. Terminal states are
marked with double squares. All other states have 4 actions:
North, South, East, West. Postive terminal state rewards are
optimization rewards, negative are costs. White squares have
a per-step cost that is set for each experiment.

The three bridges present different trade-offs between speed and
risk. Bridge (A) is short but narrow, risky when noise is high. Bridge
(B) is long and wide: safer, but slower. Bridge (C) is a compromise.

Start state. In the start state (not shown), the agent may choose
any single bridge or a combination of bridges, up to a maximum
number of actions (set to 1, 2 or 3 per experiment). The actions in
the start state have no noise, transitioning to the states labeled "A",
"B" or "C" in Figure 2a. An agent copy cannot transition back to the
start state once it has chosen a bridge.

Noise. The gridworld includes an adjustable noise parameter
[4]. With noise setting 𝛽 , directional actions (N, S, E, W) on the
bridges go in the intended direction with probability 1 − 𝛽 , and go
in the two orthogonal directions with probability 𝛽/2 each.

Optimization and Cost. The optimization reward, shown as
positive reward in Figure 2a, rewards successful crossings. The cost
reward consists of a small negative reward on each step in the white



0 1000 2000 3000 4000 5000 6000 7000 8000
Episode

0

50

100

150

200

250

300

Re
tu

rn Training
Phase

Testing
Phase

Multicopy vs other algorithms

Multicopy: 1
Every Visit MCMC

Joint Actions: 1
Q-learning

(a) Basic learning: Noise 0.1

0 1000 2000 3000 4000 5000 6000 7000 8000
Episode

0

50

100

150

200

250

300

Re
tu

rn Training
Phase

Testing
Phase

Multicopy vs other algorithms

Multicopy: 3
Multicopy: 2
Multicopy: 1

Joint Actions: 3
Joint Actions: 2
Joint Actions: 1

(b) Multiple Actions: Noise 0.1

0 10000 20000 30000 40000 50000
Episode

0

50

100

150

200

250

Re
tu

rn Training
Phase

Testing
Phase

Multicopy vs other algorithms

Multicopy: 3
Multicopy: 2
Multicopy: 1

Joint Actions: 3
Joint Actions: 2
Joint Actions: 1

(c) Long term: Noise 0.1

0 1000 2000 3000 4000 5000 6000 7000 8000
Episode

0

25

50

75

100

125

Re
tu

rn

Training
Phase

Testing
Phase

Multicopy vs other algorithms

Multicopy: 1
Every Visit MCMC

Joint Actions: 1
Q-learning

(d) Basic learning: Noise 0.3

0 1000 2000 3000 4000 5000 6000 7000 8000
Episode

0

50

100

150
Re

tu
rn

Training
Phase

Testing
Phase

Multicopy vs other algorithms

Multicopy: 3
Multicopy: 2
Multicopy: 1

Joint Actions: 3
Joint Actions: 2
Joint Actions: 1

(e) Multiple Actions: Noise 0.3

0 10000 20000 30000 40000 50000
Episode

0

50

100

150

200

Re
tu

rn

Training
Phase

Testing
Phase

Multicopy vs other algorithms

Multicopy: 3
Multicopy: 2
Multicopy: 1

Joint Actions: 3
Joint Actions: 2
Joint Actions: 1

(f) Long term: Noise 0.3

Figure 3: Three Bridges: Learning results for basic non-multicopy vs multicopy algorithms on the 3 bridges gridworld. Cost per
step is -2 in all plots. Shaded lines are averaged over 50 trial runs, dark lines are rolling 30-episode averages of those values.

bridge states, and a larger negative reward (shown) for falling off
the bridge. The cost in bridge states varies per experiment.

Broken Bridges. In the version of the three bridge gridworld
shown in Figure 2b, at the start of each episode one randomly
chosen bridge is broken midway along (Bridge A in the diagram).
All agents crossing the broken bridge during the episode will fail.

9 EXPERIMENTS
The experiments in this section aim to determine if the algorithm
can find the right number of agent copies and combination of
actions. First, we compare our algorithm from Section 7 to the
basic algorithm with joint actions from Section 6 in the Three
Bridges Gridworld, with various maximum action settings. Then
we compare the number and type of actions chosen for various cost
and noise settings, to confirm that the algorithm is able to adjust
the multiactions chosen according to the domain. Next we examine
the difference in policy when we allow duplicate actions (more than
one agent on the same bridge), and finally, some more nuanced
experiments with duplicate actions.

Exploration. On-policy techniques like MCMC can be overly
cautious when noise is high. We therefore use a boltzmann distri-
bution with action advantages and linearly decreasing temperature
over time, starting at 100 and ending at 1, for exploration. Temper-
ature decreases at the end of each episode.

Algorithm Parameters. The learning rates for MCMC and Q-
learning typically differ, with lower learning rates for MCMC. In all
algorithms we use 0.05 for MCMC and 0.2 for Q-learning, linearly

decreasing to 0 through the training episodes. We used a discount
of 0.9 for all experiments.

Training and Testing. Each agent was trained for 7500 episodes
and tested for 500 episodes, except where noted. During the testing
phase, exploration and learning are turned off completely and only
the optimal multiaction is chosen.

9.1 Learning Curves
Figure 3 contains learning curves for noise levels of 0.1 and 0.3,
with bridge step-costs of -2. In Figure 3(a) and (d), we compare our
multiagent baseline algorithm (Joint Actions) and our Multicopy
algorithm with MCMC and Q-learning. For this comparison, the
maximum number of actions is set to 1. Note that the joint action
algorithm is similar to Q-learning (on-policy) while the multicopy
algorithm is closer to MCMC (off-policy).

In Figure 3(b -c) and (e-f), we compare Multicopy and Joint
Action algorithms with various maximum action settings. Figures
(b) and (e) use the 7500 episode training time that we will use
throughout the remainder of the paper, while Figures (c) and (f) use
a longer training time of 50,000 episodes. The Multicopy algorithm
does almost as well in 7500 episodes as it does in 50,000, even with
high noise levels. The Joint Action algorithm, however, due to its
fractured state space, does not learn as well when training time is
short, particularly in (e), where noise is high.



-7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0
cost

0.
0

0.
1

0.
2

0.
3

0.
4

no
ise

263 266 271 269 268 279 282

176 182 185 199 210 217 229

93 101 108 118 134 155 161

47 50 52 56 62 85 98

16 19 20 21 24 37 55

Joint Action

-7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0
cost

0.
0

0.
1

0.
2

0.
3

0.
4

no
ise

274 277 280 283 286 289 292

197 204 210 215 225 238 249

140 148 158 170 181 194 205

83 91 103 116 127 140 153

22 31 39 53 66 77 92

Multicopy

-7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0
cost

0.
0

0.
1

0.
2

0.
3

0.
4

no
ise

0.04 0.04 0.03 0.05 0.07 0.04 0.04

0.12 0.12 0.14 0.08 0.07 0.09 0.09

0.50 0.47 0.47 0.44 0.35 0.25 0.28

0.74 0.82 0.97 1.08 1.06 0.65 0.55

0.37 0.63 0.96 1.46 1.73 1.08 0.68

Proportion improvement

50

100

150

200

250

50

100

150

200

250

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(a) Return. Per Episode return during testing phase for various noise and cost settings. Final graph shows proportion improvement
from the Joint Action return to the Multicopy return.

-7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0
cost

0.
0

0.
1

0.
2

0.
3

0.
4

no
ise

A
A,B

A
A,C

A
A,B

A
A,B
A,C

A,C
A,B

A,B,C

A
A,B
A,C

A,B,C
A,B
A,C

A
A,C

A
A,B
A,C

A
A,C

A
A,C
A,B

A
A,B
A,C

A,C
A

A,B,C

A,C
A

A,B,C

A
A,C A A A

A,C
A

A,C
A,B

A,B
A

A,C
A

A,C

A A A A A
A,C

A
A,B

A
A,B
A,C

A A A A A A
A,B

A
A,B
A,C

Joint Action

-7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0
cost

0.
0

0.
1

0.
2

0.
3

0.
4

no
ise

A A A A A A A

A,C A,C
A,B

A,C
A,B A,C

A,B
A,B,C
A,C

A,B,C A,B,C

A,B A,B
A,B,C

A,B,C
A,B A,B,C A,B,C A,B,C A,B,C

A,B A,B A,B
A,B,C

A,B,C
A,B A,B,C A,B,C A,B,C

A
A,B

A,B
A A,B A,B A,B A,B

A,B,C
A,B,C
A,B

Multicopy

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) Policy. Best actions in the start state for various noise and cost settings. Top action listed is chosen in most trials, shading shows proportion
of trials in which this action is best. All actions best in > 20% of trials are shown in decreasing order.

Figure 4: Varying Noise and Cost. Return and policy during testing for various cost and noise settings, showing the improvement
in return from the Joint Action algorithm to Multicopy (a). Actions shown in (b) are best actions. 50 trial runs.

9.2 Varying noise and costs
This section examines the Multicopy algorithm in a variety of
cost/noise combinations, both to compare to the Joint Actions algo-
rithm, and to examine what conditions lead to choosing different
combinations of actions. In these initial experiments, duplicate ac-
tions are not allowed: only one agent may be sent on each of the
three bridges. These experiments include limited training time of
7500 episodes.

As shown in Figure 4a, the Multicopy algorithm generally per-
forms better than the Joint Actions algorithm in these experiments.
The highest proportional improvement is seen when noise is high
(0.4) and costs are moderate (-4), and the lowest improvement when
noise is 0.0. Figure 4b details the policy chosen in the start state
by each algorithm. The Joint Action algorithm is much more likely
to choose a simple policy with 1 or 2 actions, perhaps because at
this stage it has a better policy for getting across the bridges under
those conditions.

The Multicopy algorithm has a more complex pattern of action
choices. Generally one would expect that as cost magnitude in-
creases, the agent should make do with fewer copies. Noise should
have roughly the opposite effect: as noise increases, the agent
should send more copies. This rule of thumb largely applies for
the upper and right rows of the graphs in Figure 4b. When there is

no noise, one action is consistently sufficient (first row). The area
where three actions are best forms a wedge from the right side of
the table, where costs are low, with a point at about -4, 0.2, where
(A, B) and (A, B, C) have roughly the same value.

The number of actions goes back down to one when noise and
costs are both high (the extreme lower left region). In this case
the agent cannot reliably achieve the task even using all three
bridges, and largely returns to using a single copy to keep costs
down. Between the regions where 3 actions are best, and the regions
where 1 action is best, there are bands in which 2 actions is the
optimal policy.

In the initial experiments, the agent may only send a single
agent on each of the three bridges, which limits the advantage to
be gained from using all three agent copies. In this section we look
at whether sending more than one agent on the same bridge can
improve performance.

As in the previous section, we compare the performance of the
Joint Action and Multicopy algorithms when a maximum of 3 ac-
tions are allowed in the start state.

9.3 Duplicate Action Choices
Identical Actions.When we remove the requirement that there
be only one agent per bridge in Figure 5, we see that the agent



-7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0
cost

0.
0

0.
1

0.
2

0.
3

0.
4

no
ise

238 244 253 259 267 276 285

209 222 226 235 244 253 264

154 160 175 175 190 196 204

76 85 95 111 110 122 127

21 25 33 35 48 43 62

Joint Action

-7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0
cost

0.
0

0.
1

0.
2

0.
3

0.
4

no
ise

274 277 280 283 286 289 291

219 226 235 243 251 259 266

171 178 184 192 201 209 221

104 111 120 131 143 152 165

40 45 53 62 76 90 105

Multicopy

-7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0
cost

0.
0

0.
1

0.
2

0.
3

0.
4

no
ise

0.15 0.13 0.11 0.09 0.07 0.05 0.02

0.05 0.02 0.04 0.03 0.03 0.03 0.01

0.11 0.11 0.05 0.10 0.06 0.07 0.08

0.36 0.32 0.27 0.18 0.29 0.25 0.30

0.88 0.81 0.61 0.75 0.59 1.08 0.70

Proportion improvement

50

100

150

200

250

50

100

150

200

250

0.2

0.4

0.6

0.8

1.0

(a) Return. Per Episode return during testing phase for various noise and cost settings.

-7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0
cost

0.
0

0.
1

0.
2

0.
3

0.
4

no
ise

A,A,A A,A,A A,A,A A,A,A A,A,A
A,A,C A,A,A A,A,A

A,A,A
A,A A,A,A A,A,A

A,A,C A,A,A A,A,A A,A,A A,A,A

A,A,A
A,A A,A,A A,A,A

A,A
A,A,A
A,A

A,A,A
A,A

A,A,A
A,A A,A,A

A,A,A
A

A,A

A,A,A
A,A
A

A,A
A,A,A A,A,A A,A,A

A,A
A,A,A
A,A

A,A,A
A,A

A
A,A,A A A

A,A
A

A,A,A
A,A,A

A A,A,A A,A,A
B

Joint Action

-7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0
cost

0.
0

0.
1

0.
2

0.
3

0.
4

no
ise

A A A A A A A
A,A

A,A,A
A,A A,A,A A,A,A A,A,A A,A,A A,A,A A,A,A

A,A,C

A,A,A A,A,A A,A,A A,A,A
A,A,B

A,A,A
A,A,B

A,A,B
A,A,A A,A,B

A,A,A A,A,A
A,A,B

A,A,B
A,A,A A,A,B A,A,B A,A,B A,A,B

A,A,A
A,A

A,A,A
A,A A,A,A A,A,B

A,A,A A,A,B A,B,B
A,A,B

A,B,B
B,B,B

Multicopy

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) Policy. Best actions in the start state for various noise and cost settings. Top action listed is chosen in most trials, heatmap value is proportion
of trials in which this action is best. All actions best in > 20% of trials are shown in decreasing order.

Figure 5: Identical Duplicate Actions. Return and policy during testing for various cost and noise settings when identical
duplicate actions are allowed. 50 trial runs.

tends to choose to send multiple agents over bridge A, the shortest
bridge (Figure 5b Multicopy). This bridge is dangerous due to its
narrowness, and there is no correlation between the success or
failure between agent copies crossing the bridge. This means that
making multiple identical attempts at the same bridge can improve
performance even if the agents do no coordination or cooperation
on the bridge.

For our Multicopy algorithm, Figure 5b shows largely cases in
which the agent chooses the maximum 3 copies, though there are
still a few cases where the agent chooses fewer copies to reduce
costs. Multiple copies also do not help when there is no noise in the
environment (the first row of all heatmaps in Figure 5). While the
Joint Action algorithm is closer in return to theMulticopy algorithm
in these experiments (Figure 5a), it does make the odd choice to
send three agent copies even when there is no noise. Generally the
"best" action is not consistent across trial runs for this algorithm,
however (see Figure 5b), indicating that it has not fully converged.

9.4 Correlated Dangers
Thus far, we have examined a case in which the agent is allowed
to send only one copy per bridge and a case in which the agent
can and does send multiple copies on the same bridge. Next we
examine a case in which despite having the option to send multiple
copies on the same path, the rational behavior is to spread copies

over different paths. One such scenario occurs when the noise or
dangers on a path are correlated for all agents on the same path.

We model this using the Broken Bridges gridworld in Figure 2b.
Here, each time the task is attempted, the agent finds that a random
bridge is broken, and all agents on that same bridge fail at the task.
This might correspond in more realistic domains to faults in parts
of the wireless network, or the possibility of tunnel collapse in a
multi-robot region for a robot navigating a collapsed building.

This appears to be a particularly difficult task for the Joint Ac-
tions agent to learn in the time allotted: in Figure 6a we can see that
the Multicopy algorithm can do up to 12 times better in cases where
noise is high. In Figure 6b we can see that this basic algorithm often
still chooses only repetitions of bridge A, which is the shortest
bridge and often the first that it learns to cross.

Since sending multiple agents on the same bridge can lead to
both agents being lost, the Multicopy agent prefers to spread the
copies over at least two different bridges to ameliorate risk, as
shown in Figure 6b.

10 FUTUREWORK
We will continue developing these algorithms in combination with
modern function approximation methods such as Neural Networks
[2, 25] in order to apply them to Mobile Wireless Networks [12, 19,
22].



-7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0
cost

0.
0

0.
1

0.
2

0.
3

0.
4

no
ise

129 142 159 167 179 195 201

84 91 125 138 149 166 152

51 55 71 86 97 88 100

13 14 25 36 36 24 31

-2 1 4 8 5 3 9

Joint Action

-7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0
cost

0.
0

0.
1

0.
2

0.
3

0.
4

no
ise

222 229 238 239 248 253 261

157 166 173 183 192 203 213

104 113 122 133 143 149 163

43 55 63 71 82 95 106

3 7 13 19 26 39 53

Multicopy

-7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0
cost

0.
0

0.
1

0.
2

0.
3

0.
4

no
ise

0.72 0.62 0.49 0.43 0.39 0.30 0.30

0.87 0.81 0.39 0.32 0.29 0.22 0.41

1.04 1.07 0.72 0.55 0.48 0.70 0.63

2.38 2.88 1.49 1.00 1.32 2.89 2.39

-2.69 4.38 2.31 1.24 3.84 13.21 4.96

Proportion improvement

0

50

100

150

200

250

0

50

100

150

200

250

2

0

2

4

6

8

10

12

(a) Return. Per Episode return during testing phase for various noise and cost settings.

-7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0
cost

0.
0

0.
1

0.
2

0.
3

0.
4

no
ise

A,A,A
A,A

A,A,A
A,A

A,A,A
A,A

A,A,A
A,A A,A,A A,A,A

A,A,B
A,A,A
A,A,C

A
A,A,A

A
A,A,A
A,A

A
A,A,A A,A,A A,A,A A,A,A A,A,A

A,A

A
A,A,A

A
A,A,A

A
A,A,A

A
A,A,A
A,A

A,A,A
A,A
A

A,A,A
C A,A,A

A A A A A C B

A A A A A C B

Joint Action

-7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0
cost

0.
0

0.
1

0.
2

0.
3

0.
4

no
ise

A,C A,C A,C A,C A,C A,C A,C

A,A,C
A,B,C

A,A,B
A,A,C

A,A,C
A,A,B
A,B,C

A,A,B
A,A,C
A,B,C

A,A,C
A,B,C

A,B,C
A,A,B A,B,C

A,A,B
A,A,C

A,A,B
A,A,C

A,A,B
A,A,C A,A,B A,A,B

A,A,C
A,A,B
A,B,C

A,A,B
A,B,C

A,A,A A,A,B
A,A,A

A,A,A
A,A,B A,A,B A,A,B A,A,B A,A,B

A A
A,A

A
B A,A B

A,B A,B,B

Multicopy

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) Policy. Best actions in the start state for various noise and cost settings. Top action listed is chosen in most trials, heatmap value is proportion
of trials in which this action is best. All actions best in > 20% of trials are shown in decreasing order.

Figure 6: Broken Bridges Experiments. Return and policy during testing for various cost and noise settings when identical
duplicate actions are allowed and a random bridge is broken in each trial. 20 trial runs.

In this paper, and in the Mobile Wireless Networks applications
that inspired it, the agent seeks to optimize the amount of time
required to complete a task. However, other types of optimization
functions are possible within the same mathematical framework:
building the best object, or getting the farthest in an exploration or
rescue task.

In this work, we assume that communication between agents is
expensive or unavailable much of the time, aside from the point
at which the agent decides to duplicate itself. We therefore use a
model where communication is limited to only the duplication step.
This was instrumental in producing the simplified value function
we use here. However, we will look for types of communication
that are possible while maintaining this value function model. Once
there is some level of interaction between agents, non-deterministic
policies may be required [7, 23].

Once wemove to larger problems and approximate solutions, dis-
tributional RL [3] may prove useful, given a maximization operator
for their particle based value representation.

In this paper we primarily looked at different cost/optimization
reward ratios in order to show that different multiactions are cho-
sen at different settings. However, even in the single agent case,
multiobjective RL [8, 13–15] would be a useful tool to find a range of
policies for different weights. Lexicographic ordered RL [9, 21]could

be particularly useful if it allows us to find the best delay given a
particular target for throughput, for example.

11 CONCLUSION
This paper makes several contributions. First, we have shown that
for the specific multiagent problem we examine here, considering
the joint state space of all agent copies is not necessary, and joint
actions are necessary only when duplicating agents.

Even using a simple very gridworld, the algorithm found a com-
plex pattern of optimization that is easier to construct algorithmi-
cally than by hand-coding heuristics.

Third, we examined the cases in which the algorithm should use
the same action more than once when creating agent copies, and
cases in which it should use a diverse action set.

This formalism, while more restrictive than the general multia-
gent case, seems likely to be useful in Mobile Wireless Networks
and other domains as well.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation under Grant No. 2154190. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of
the National Science Foundation.



REFERENCES
[1] Stefano V. Albrecht, Filippos Christianos, and Lukas Schäfer. 2024. Multi-Agent

Reinforcement Learning: Foundations and Modern Approaches. MIT Press. https:
//www.marl-book.com

[2] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony
Bharath. 2017. Deep Reinforcement Learning: A Brief Survey. IEEE Signal Pro-
cessing Magazine 34, 6 (2017), 26–38. https://doi.org/10.1109/MSP.2017.2743240

[3] Marc G. Bellemare, Will Dabney, and Mark Rowland. [n.d.]. Distributional Rein-
forcement Learning. MIT Press. https://www.distributional-rl.org/

[4] John DeNero and Dan Klein. 2010. Teaching Introductory Artificial Intelligence
with Pac-Man. Proceedings of the AAAI Conference on Artificial Intelligence 24, 3
(Jul. 2010), 1885–1889. https://doi.org/10.1609/aaai.v24i3.18829

[5] Nancy Fulda and Dan Ventura. 2007. Predicting and preventing coordination prob-
lems in cooperative Q-learning systems. In Proceedings of the 20th international
joint conference on Artifical intelligence (San Francisco, CA, USA, 2007-01-06)
(IJCAI’07). Morgan Kaufmann Publishers Inc., 780–785.

[6] Sven Gronauer and Klaus Diepold. 2022. Multi-agent deep reinforcement learning:
a survey. Artificial Intelligence Review 55, 2 (2022), 895–943. https://doi.org/10.
1007/s10462-021-09996-w

[7] Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. [n.d.]. Rein-
forcement Learning with Deep Energy-Based Policies. https://doi.org/10.48550/
arXiv.1702.08165 arXiv:1702.08165 [cs]

[8] Conor F Hayes. [n.d.]. A Brief Guide to Multi-Objective Reinforcement Learning
and Planning. ([n. d.]).

[9] Conor F Hayes, Enda Howley, and Patrick Mannion. [n.d.]. Dynamic Thresholded
Lexicographic Ordering. ([n. d.]).

[10] S. Jain, K. Fall, and R. Patra. 2004. Routing in a delay tolerant network. In Proc. of
SIGCOMM.

[11] H. Khorasgani, H. Wang, H. Tang, and C. Gupta. 2021. K-nearest Multi-agent
Deep Reinforcement Learning for Collaborative Tasks with a Variable Number
of Agents. In 2021 IEEE International Conference on Big Data (Big Data). IEEE
Computer Society, Los Alamitos, CA, USA, 3883–3889. https://doi.org/10.1109/
BigData52589.2021.9671691

[12] Victoria Manfredi, Alicia P. Wolfe, Xiaolan Zhang, and Bing Wang. [n.d.]. Learn-
ing an adaptive forwarding strategy for mobile wireless networks: resource usage
vs. latency. ([n. d.]). https://doi.org/10.1007/s10994-024-06601-3

[13] Kristof Van Moffaert and Ann Nowé. [n.d.]. Multi-Objective Reinforcement
Learning using Sets of Pareto Dominating Policies. 15, 107 ([n. d.]), 3663–3692.
http://jmlr.org/papers/v15/vanmoffaert14a.html

[14] Hossam Mossalam, Yannis M. Assael, Diederik M. Roijers, and Shimon Whiteson.
[n.d.]. Multi-Objective Deep Reinforcement Learning. https://doi.org/10.48550/
arXiv.1610.02707 arXiv:1610.02707 [cs]

[15] Thanh Thi Nguyen, Ngoc Duy Nguyen, Peter Vamplew, Saeid Nahavandi, Richard
Dazeley, and Chee Peng Lim. [n.d.]. A multi-objective deep reinforcement learn-
ing framework. 96 ([n. d.]), 103915. https://doi.org/10.1016/j.engappai.2020.
103915

[16] Afshin Oroojlooy and Davood Hajinezhad. 2023. A review of cooperative multi-
agent deep reinforcement learning. Applied Intelligence 53, 11 (2023), 13677–
13722.

[17] G. A. Rummery and M. Niranjan. 1994. On-line Q-learning using connectionist
systems. Technical Report CUED/F-INFENG/TR 166. Engineering Department,
Cambridge University.

[18] Christian Schroeder de Witt, Jakob Foerster, Gregory Farquhar, Philip Torr, Wen-
delin Boehmer, and Shimon Whiteson. 2019. Multi-Agent Common Knowledge
Reinforcement Learning. In Advances in Neural Information Processing Systems,
Vol. 32. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/
2019/hash/f968fdc88852a4a3a27a81fe3f57bfc5-Abstract.html

[19] Thrasyvoulos Spyropoulos, Konstantinos Psounis, and Cauligi S Raghavendra.
2008. Efficient routing in intermittently connectedmobile networks: Themultiple-
copy case. IEEE/ACM transactions on networking 16, 1 (2008), 77–90.

[20] Richard S Sutton and Andrew G Barto. 2018. Reinforcement Learning: An Intro-
duction (2nd ed.). MIT Press. http://www.incompleteideas.net/book/the-book-
2nd.html

[21] Alperen Tercan and Vinayak Prabhu. [n.d.]. Thresholded Lexicographic Ordered
Multi-Objective Reinforcement Learning. ([n. d.]). https://openreview.net/forum?
id=mmFtinp4wQ_

[22] Xiaozheng Tie, Arun Venkataramani, and Aruna Balasubramanian. 2011. R3:
Robust replication routing in wireless networks with diverse connectivity char-
acteristics. In Proceedings of the 17th annual international conference on Mobile
computing and networking. 181–192.

[23] Nino Vieillard, Olivier Pietquin, and Matthieu Geist. [n.d.]. Munchausen Rein-
forcement Learning. In Advances in Neural Information Processing Systems (2020),
Vol. 33. Curran Associates, Inc., 4235–4246. https://proceedings.neurips.cc/paper/
2020/hash/2c6a0bae0f071cbbf0bb3d5b11d90a82-Abstract.html

[24] C. J. C. H. Watkins and P. Dayan. 1992. Q-learning. Machine Learning 8, 3-4
(1992), 279–292.

[25] Annie Wong, Thomas Bäck, Anna V. Kononova, and Aske Plaat. 2023. Deep mul-
tiagent reinforcement learning: challenges and directions. Artificial Intelligence
Review 56, 6 (2023), 5023–5056. https://doi.org/10.1007/s10462-022-10299-x

https://www.marl-book.com
https://www.marl-book.com
https://doi.org/10.1109/MSP.2017.2743240
https://www.distributional-rl.org/
https://doi.org/10.1609/aaai.v24i3.18829
https://doi.org/10.1007/s10462-021-09996-w
https://doi.org/10.1007/s10462-021-09996-w
https://doi.org/10.48550/arXiv.1702.08165
https://doi.org/10.48550/arXiv.1702.08165
https://arxiv.org/abs/1702.08165 [cs]
https://doi.org/10.1109/BigData52589.2021.9671691
https://doi.org/10.1109/BigData52589.2021.9671691
https://doi.org/10.1007/s10994-024-06601-3
http://jmlr.org/papers/v15/vanmoffaert14a.html
https://doi.org/10.48550/arXiv.1610.02707
https://doi.org/10.48550/arXiv.1610.02707
https://arxiv.org/abs/1610.02707 [cs]
https://doi.org/10.1016/j.engappai.2020.103915
https://doi.org/10.1016/j.engappai.2020.103915
https://proceedings.neurips.cc/paper_files/paper/2019/hash/f968fdc88852a4a3a27a81fe3f57bfc5-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/f968fdc88852a4a3a27a81fe3f57bfc5-Abstract.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
https://openreview.net/forum?id=mmFtinp4wQ_
https://openreview.net/forum?id=mmFtinp4wQ_
https://proceedings.neurips.cc/paper/2020/hash/2c6a0bae0f071cbbf0bb3d5b11d90a82-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/2c6a0bae0f071cbbf0bb3d5b11d90a82-Abstract.html
https://doi.org/10.1007/s10462-022-10299-x

	Abstract
	1 Introduction
	2 Application to Wireless Networks
	3 Reinforcement Learning
	4 Best Actions vs Best Multiaction
	5 Cooperative Multiagent RL
	6 Baseline Multiagent Algorithm
	7 Multicopy Actions
	8 Gridworld Domains
	9 Experiments
	9.1 Learning Curves
	9.2 Varying noise and costs
	9.3 Duplicate Action Choices
	9.4 Correlated Dangers

	10 Future Work
	11 Conclusion
	Acknowledgments
	References

