
Learned Shields for Multi-Agent Reinforcement Learning
Daniel Melcer

Northeastern University

Boston, MA, USA

melcer.d@northeastern.edu

Christopher Amato

Northeastern University

Boston, MA, USA

c.amato@northeastern.edu

Stavros Tripakis

Northeastern University

Boston, MA, USA

s.tripakis@northeastern.edu

ABSTRACT
Shielding is an effective method for ensuring safety in multi-agent

domains; however, its applicability has previously been limited

to environments for which an approximate discrete model and

safety specification are known in advance. We present a method

for learning shields in cooperative fully-observable multi-agent

environments where neither a model nor safety specification are

provided, using architectural constraints to realize several impor-

tant properties of a shield. We show through a series of experiments

that our learned shielding method is effective at significantly re-

ducing safety violations, while largely maintaining the ability of an

underlying reinforcement learning agent to optimize for reward.

CCS CONCEPTS
• Theory of computation→Multi-agent reinforcement learn-
ing.

KEYWORDS
Multi-Agent, Shielding, Safety

1 INTRODUCTION
Reinforcement learning (RL) has gained prominence as a method

for optimizing an agent’s behavior to achieve a high reward in a

variety of tasks [15, 21, 25]. Various extensions of RL to the multi-

agent setting [20, 26] have enabled RL to succeed in domains such

as decentralized traffic light control [4], cooperative control of a

robot [16], and expert-level play of multiplayer video games [23].

However, a poorly understood reward function may lead to unex-

pected, undesired, or unsafe behavior [5]. A large body of research

has focused on safe reinforcement learning methods, to ensure that

a given safety specification is enforced, regardless of the reward

function [27]. One approach, shielding [2, 3], focuses not on learn-

ing a single safe policy, but on determining the set of all safe actions

that agents may take. We find this approach appealing because it

allows for the use of any underlying method. A RL method that sup-

ports enabled and disabled actions at each state may be protected

with pre-posed shielding, where the RL agent receives a set of safe

actions and must choose from this set. Even if the method requires

a fixed set of enabled actions, it may be protected with post-posed
shielding, where the agent is initially oblivious to the set of safe

actions, but upon selecting an unsafe action, the agent’s selection

is blocked and it receives negative feedback.

However, existing shielding methods are limited to domains in

which a model of the environment, or at least a sufficiently detailed

approximation, is provided in advance. This is a much stronger

Proc. of the Adaptive and Learning Agents Workshop (ALA 2025), Avalos, Aydeniz,
Müller, Mohammedalamen (eds.), May 19 – 20, 2025, Detroit, Michigan, USA, ala-
workshop.github.io. 2025.

assumption than is typically required for reinforcement learning,

where the agent learns strictly through environment interaction.

While some domains require avoiding actions that lead to dead-

lock states where no safe actions are available, many domains, such

as those without momentum, generally do not contain deadlock

states. As we will also discuss later, we believe that shield learning

in deadlock-free domains is a useful subproblem that may lead to

a solution for shield learning in domains that contain deadlocks.

In the single-agent deadlock-free domain, shield learning may be

a straightforward supervised learning problem, after collecting a

replay buffer containing safe and unsafe transitions. However, the

presence of multiple agents significantly complicates the issue, as

each agent must be able to independently select an individual action,

with a safe joint action as the result. Furthermore, without a careful

design of the learning process, algorithms that operate over the

agents’ joint action space often require computation exponential

in the number of agents [20].

We therefore contribute a method for efficiently learning the set

of safe actions available to each agent in a multi-agent setting with

safety constraints, without any human-provided information about

the environment or its safety specification.We discuss how the pres-

ence of a learned shield impacts the underlying training process,

and introduce an optimization to avoid inducing a potential insta-

bility. We show through a series of experiments that our method

is able to effectively learn a safety specification in environments

where deadlock states are not a concern, and allow the underlying

reinforcement learning agent to safely achieve a high reward in

such tasks. Finally, we discuss considerations for extending learned

shielding to environments with potential deadlock states.

1.1 Related Work
Shielding in single-agent domains [2, 3] descends from the field

of reactive synthesis [6] as a method for ensuring safety while al-

lowing for any underlying learning method to succeed, assuming

that a model of the environment is available. While the problem of

reactive synthesis is generally undecidable in multi-agent domains

[22], it is possible to still use reactive synthesis tools to implement

shielding in such domains under the assumption of local communi-

cation [7] or full observability [13]. In partially observable domains,

decentralized shields can be synthesized on a best-effort basis by en-

coding the safety constraints as a boolean formula and using a SAT

solver [14]. However, while these methods are able to guarantee

zero safety violations, they require a human provided abstraction

of the environment and safety specification.

There exist other methods for enforcing safety in multi-agent

environments; for example, methods such as PPO-Lagrangian [18]

and CPO [1] have been extended into the multiagent setting [10],

and safe policies may be learned through a sequential agent iter-

ation scheme [12]. While these methods may learn a safe policy,

we are interested in learning a shield that returns a variety of safe

actions, rather than a single safe policy.

Regardless of safety, multi-agent reinforcement learning is gen-

erally accomplished via a centralized training and decentralized

execution (CTDE) paradigm. For example, MAPPO [26] is a natural

extension of PPO [19] that maintains decentralized actors, but uses

a centralized critic for more accurate advantage calculations. Sev-

eral extensions of Q-learning to multi-agent settings use individual

utility values for each agent, and introduce a constrained mixing

function to combine these into a centralized Q-value such that the

best joint action corresponds to the collection of each agents’ best

individual actions [17, 20, 24].

2 PRELIMINARIES
2.1 Notation
For set𝑋 , letΔ(𝑋) be the set of distributions over𝑋 . For distribution

𝑥 ∈ Δ(𝑋), let supp(𝑥) ⊆ 𝑋 be its support; i.e. the set of all values

𝑋 with nonzero probability in 𝑥 . 2𝑋 is the powerset of 𝑋 .

Given joint action 𝑎, we index individual actions as 𝑎1, . . . , 𝑎𝑘 .

2.2 SMMDPs
Cooperative fully observable multiagent environments are often

characterized as a Multiagent Markov Decision Process (MMDP).

We extend its description to include a binary safety specification:
1

Definition 1 (SMMDP). A Safety Multiagent Markov Decision
Process (SMMDP) is a tuple M = (𝐼 = [1..𝑘], 𝑆, 𝑆0, 𝐴 = (𝐴1 × . . . ×
𝐴𝑘),𝑇 , 𝑅,𝛾,𝑈) where 𝐼 is a set of agents, 𝑆 is a state space, 𝑆0 ∈ Δ(𝑆)
is a distribution over initial states, 𝐴 represents the joint action space,
composed of the product of 𝑘 individual action spaces, 𝑇 : 𝑆 ×𝐴 →
Δ(𝑆) represents the state transition function, 𝑅 : 𝑆 ×𝐴×𝑆 → R is the
reward function, 𝛾 is the reward discount factor, and𝑈 : 𝑆 ×𝐴 → B
denotes if a state-action pair causes a safety violation.

The aim of multi-agent reinforcement learning is to find a set of

individual policies—functions 𝜋𝑖 : 𝑆 → Δ(𝐴𝑖)—that maximizes the

expected sum of discounted rewards; i.e. the expected return:

Definition 2 (Expected Return). Given SMMDP M and a set
of policies 𝜋𝑖 : 𝑆 → Δ(𝐴𝑖) for 𝑖 ∈ 𝐼 , the expected return of a taking
action 𝑎 in state 𝑠 is:

𝑄𝜋 (𝑠, 𝑎) = E𝑠0=𝑠 ;𝑎0=𝑎,𝑎𝑛,𝑖∼𝜋𝑖 (𝑠𝑛) ;𝑠𝑛+1∼𝑇 (𝑠𝑛,𝑎𝑛)

[∞∑︁
𝑡=0

𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)
]

Where 𝑎𝑛 = (𝑎𝑛,1, . . . , 𝑎𝑛,𝑘). Finally, a set of individual policies
is safe if they collectively only choose safe actions:

Definition 3 (Safe Policy). A set of policies 𝜋1, . . . , 𝜋𝑘 is safe in
SMMDPM if∀𝑠 ∈ 𝑆, 𝑎 ∈ (supp(𝜋1 (𝑠))×. . .×supp(𝜋𝑘 (𝑠))),𝑈 (𝑠, 𝑎) =
⊥; i.e. the policies never choose a violating action

2.3 Mixing Functions
Given a function 𝑄 : 𝑆 ×𝐴 → R, a common task in reinforcement

learning involves computing max𝑎∈𝐴𝑄 (𝑠, 𝑎) for some 𝑠 ∈ 𝑆 [21].

However, if 𝐴 is large—for example, if it is the product of sets

𝐴1× . . .×𝐴𝑘—then the maximization may be expensive to compute.

1
We contrast this with Constrained MMDPs, where the sum of real-valued costs must

remain below a threshold.

One common approach in MARL is to introduce individual func-

tions 𝑄𝑖 : 𝑆 × 𝐴𝑖 → R for 𝑖 ∈ 𝐼 , and to constrain 𝑄 such that it

satisfies the Individual-Global Max principle with respect to the

collection of each agents’ 𝑄𝑖 :

Definition 4 (Individual-Global Max). Function 𝑄 satisfies
the Individual-Global Max (IGM) principle with respect to𝑄1, . . . , 𝑄𝑘

if ∀𝑠 ∈ 𝑆, {argmax𝑎𝑖 ∈𝐴𝑖
𝑄𝑖 (𝑠, 𝑎𝑖)}𝑖∈𝐼 = argmax𝑎∈𝐴𝑄 (𝑠, 𝑎).

Most implementations realize the IGM constraint by mixing the

outputs of each individual 𝑄𝑖—a mixing architecture as simple as

𝑄 (𝑠, 𝑎) = ∑
𝑖∈𝐼 𝑄𝑖 (𝑠, 𝑎𝑖) is sufficient to satisfy this constraint [20],

but more complex mixing architectures allow for a more general

realization of the function class [17, 24].

Using any architecture that satisfies IGM, the maximization may

be completed in 𝑂 (∑𝑖∈𝐼 |𝐴𝑖 |) operations, rather than 𝑂 (|𝐴|) =

𝑂 (∏𝑖∈𝐼 |𝐴𝑖 |) operations—each agent may iterate over its individual

action space to obtain the maximum, rather than needing to iterate

over the joint action space.

2.4 Shielding
Shielding [2, 3] is a class of methods for safe reinforcement learning.

Agents are equipped with a shield:

Definition 5 (Shield). A shield is a functionH : 𝑆 → 2
𝐴 such

that ∀𝑠 ∈ 𝑆,H(𝑠) ≠ ∅.

We focus on pre-posed shielding, in which the shield provides

a set of actions at each state, such that some desired safety speci-

fication is maintained if the agent selects an action from this set.

When at state 𝑠 , shieldH is applied to policy 𝜋 by setting the prob-

ability 𝜋 (𝑎 |𝑠) for all actions 𝑎 ∉ H(𝑠) to 0, and renormalizing the

remaining probabilities.

In the multiagent setting [7, 13], a decentralized shield is a set

of individual shields H𝑖 : 𝑆 → 2
𝐴𝑖

such that each agent can select

any individual action from its shield, and the resulting joint action

maintains the safety specification; in other words, that each indi-

vidual shield applied to its respective policy results in a safe set of

policies for the environment.

3 PROBLEM STATEMENT & METHOD
OVERVIEW

Our safe multiagent reinforcement learning problem may be sum-

marized as follows:

Problem 1. Given a SMMDP M, find a safe policy for each agent
𝜋𝑖 : 𝑆 → Δ(𝐴𝑖) that maximizes the expected return.

Our approach uses the basic structure of shielded multiagent

reinforcement learning:

(1) Construct a decentralized shield that constrains the agents’

action spaces such that they can only choose safe actions.

(2) Given a decentralized shield, learn a decentralized policy

that maximizes the expected return under this shield.

When the environment specification and safety constraint are

known in advance, a shield may be constructed ahead of time using

a reactive synthesis tool [2]. However, because these inputs are not

available in our case, we must instead learn the shield by interacting

with the environment. As the shield is learned at the same time as

the policy, several new optimizations must be made to the policy

learning step as well.

We focus on the case where ∀𝑠 ∈ 𝑆, ∃𝑎 ∈ 𝐴,𝑈 (𝑠, 𝑎) = ⊥—there
exists some non-violating action at every state—and discuss envi-

ronments in which this does not hold in Section 6.

3.1 Shield Construction
To act safely, agents must be restricted such that in state 𝑠 , they may

only select joint actions 𝑎 where𝑈 (𝑠, 𝑎) = ⊥. It may not be efficient

to simply learn and use a function that approximates 𝑈 directly—

during action selection, agents will be required to iterate over joint

actions until they find a safe action. The number of possible joint

actions grows exponentially with the number of agents, leading to

scalability challenges. Additionally, if communication is restricted

after training is complete, each agent must be able to select its set

of safe individual actions independently from other agents.

Therefore, we learn individual safety functions F𝑖 : 𝑆 × 𝐴𝑖 →
[0, 1] for 𝑖 ∈ 𝐼 . As these are learned functions and must have a

continuous output to enable gradient descent, we use threshold

𝑡 ∈ (0, 1) to ultimately determine if an action is allowed by the

shield or not. We obtain individual shields by collecting all actions

above the threshold: H𝑖 (𝑠) = {𝑎 |F𝑖 (𝑠, 𝑎) > 𝑡}. We find that 𝑡 = 0.5

works well empirically.

The safety functions F𝑖 must satisfy two constraints. First, as

long as each agent selects any action allowed by its individual

shield—any action where the individual safety function’s output is

above the threshold—a violating joint action is not selected.

∀𝑠 ∈ 𝑆,∀𝑎 ∈ 𝐴,
∧
𝑖∈𝐼

F𝑖 (𝑠, 𝑎𝑖) > 𝑡 =⇒ 𝑈 (𝑠, 𝑎) = ⊥ (1)

Second, as each individual shield must have a nonempty set of

actions at each state, there must be some action for which each

individual safety function returns a value above 𝑡 :

∀𝑠 ∈ 𝑆,∀𝑖 ∈ 𝐼 , ∃𝑎𝑖 ∈ 𝐴𝑖 , F𝑖 (𝑠, 𝑎𝑖) > 𝑡 (2)

Problem 2. Given SMMDP M, find a set of individual shields
F𝑖 : 𝑆 ×𝐴𝑖 → [0, 1] for 𝑖 ∈ 𝐼 such that constraints 1 and 2 hold.

3.1.1 Constraint (1)—Only Safe Actions Selected. Recall that, as
described in Section 2.3, a set of functions that satisfy IGM may be

used to avoid iterating over a joint action space, and enable agents

to independently select from their individual action spaces.

Inspired by the IGM constraint, we define the Individual-Global
Safe (IGS) principle:

Definition 6 (IGS Principle). Joint safety function F : 𝑆×𝐴 →
[0, 1] satisfies the Individual-Global Safe (IGS) principle with respect
to individual safety functions F𝑖 : 𝑆 × 𝐴𝑖 → [0, 1] for 𝑖 ∈ 𝐼 if
∀𝑠 ∈ 𝑆, 𝑎 = (𝑎1, . . . , 𝑎𝑘) ∈ 𝐴, ∃𝑖 ∈ 𝐼 , F𝑖 (𝑠, 𝑎𝑖) ≤ F (𝑠, 𝑎).

Let the safety indicator function
˜F (𝑠, 𝑎) =

{
1 𝑈 (𝑠, 𝑎) = ⊥
0 𝑈 (𝑠, 𝑎) = ⊤

If we construct individual functions F1, . . . , F𝑘 such that
˜F sat-

isfies IGS with respect to them, then each agent’s local decision

making will ensure safety:

Theorem 1. If ˜F satisfies IGS with respect to F1, . . . , F𝑘 , then
F1, . . . , F𝑘 satisfy constraint (1).

Proof. By cases on 𝑈 (𝑠, 𝑎); if 𝑈 (𝑠, 𝑎) = ⊤, ˜F (𝑠, 𝑎) = 0, and thus

∃𝑖 ∈ 𝐼 , F𝑖 (𝑠, 𝑎𝑖) ≤ 0. As 𝑡 ∈ (0, 1), F𝑖 (𝑠, 𝑎𝑖) < 𝑡 , and constraint (1)

is satisfied. If𝑈 (𝑠, 𝑎) = ⊥, constraint (1) is trivially satisfied.

While we cannot directly construct the individual safety func-

tions so that IGS holds with respect to
˜F , we can create a function

F that is structurally constrained to satisfy IGS with respect to

F1, . . . , F𝑘 , and then train F end-to-end to approximate
˜F . If this

approximation is succesfully learned, then the learned F1, . . . , F𝑘
are guaranteed to satisfy constraint (1).

We realize the IGS principle with the following mixing architec-

ture:

F (𝑠, 𝑎) = max

(
𝐷 (𝑠, 𝑎),min

𝑖∈𝐼
F𝑖 (𝑠, 𝑎𝑖)

)
Where 𝐷 : 𝑆 ×𝐴 → R is an unconstrained learned function.

Theorem 2. The proposed mixing architecture satisfies IGS.

Proof. Due to the outer maximization,min𝑖∈𝐼 F𝑖 (𝑠, 𝑎𝑖) ≤ F (𝑠, 𝑎).
The minimization then ensures that ∃𝑖 ∈ 𝐼 , F𝑖 (𝑠, 𝑎𝑖) = F (𝑠, 𝑎), and
therefore ∃𝑖 ∈ 𝐼 , F𝑖 (𝑠, 𝑎𝑖) ≤ F (𝑠, 𝑎).

3.1.2 Constraint (2)—Some Action Always Available. We have pre-

viously treated F𝑖 as a black box; however, to enforce constraint

(2), we impose an internal structure on this function. We structure

F𝑖 as follows:2

F𝑖 (𝑠, 𝑎𝑖) =
Posact(F ∗

𝑖
(𝑠, 𝑎𝑖))

max𝑎′
𝑖
∈𝐴𝑖

Posact(F ∗
𝑖
(𝑠, 𝑎′

𝑖
))

where F ∗
𝑖

: 𝑆 ×𝐴𝑖 → R is an unconstrained learned function for

𝑖 ∈ 𝐼 , and Posact refers to any activation function whose range is

the positive reals. We observe that the softplus activation function

works well for this. The maximization only occurs over the set

of individual actions, and is therefore more efficient to compute

compared to an operation that acts over the entire joint action space.

This can further be improved by designing F ∗
𝑖
such that it outputs

values for all individual actions in one pass; for example, if F ∗
𝑖
is

implemented as a neural network, by using a last layer of size |𝐴𝑖 |.
Regardless of the output of F ∗

𝑖
itself, there will always be some

action at each state for which F𝑖 (𝑠, 𝑎) = 1, and is thus above the

threshold. Importantly, though not strictly necessary to satisfy

the constraint, the structure that we present has the capacity to

represent cases where several or all individual actions are enabled.

3.2 Learning With a Shield
Problem 3. Given SMMDPM and individual shieldsH1, . . . ,H𝑘 ,

find individual policies 𝜋1, . . . , 𝜋𝑘 that are optimal inM, such that
∀𝑠 ∈ 𝑆, 𝑖 ∈ 𝐼 , supp(𝜋𝑖 (𝑠)) ⊆ H𝑖 (𝑠).

Weuse the learnedH1, . . . ,H𝑘 to implement pre-posed shielding

[2] as described in Section 2.4; the shield provides action masks that

may be used with any reinforcement learning method that supports

enabled and disabled actions. We choose MAPPO [26] as our base

RL method; after evaluating the underlying policy for agent 𝑖 on

a given state 𝑠 , the probabilities of any actions not in H𝑖 (𝑠) are
zeroed out, and the remainder is re-normalized.

3

2
We additionally stop gradient propagation in the denominator for improved stability.

3
This is implemented as setting the logits of unsafe actions to −∞ prior to the log-

sumexp normalization.

Alshiekh et al. [2] show that shielded reinforcement learning

exhibits the same convergence guarantees as the underlying RL

method; however, if our shield and agent are trained together in a

bootstrapping scenario, the shield changes as the agent is trained.

This effectively creates a nonstationary environment, loosening the

convergence guarantees. We discuss several mitigations for this

nonstationarity in Section 4.2.

4 METHOD DETAIL
While we use the basic individual components discussed in Sec-

tion 3, integration of these into a complete reinforcement learning

system requires some additional work.

4.1 Shield learning
The mixed shield function is trained end-to-end using a standard

MSE loss:

LF (𝑠, 𝑎) =
(
F (𝑠, 𝑎) − ˜F (𝑠, 𝑎)

)
2

Where
˜F is the safety indicator function, defined in Section 3.1.

Due to the softplus activation within F𝑖 , the outputs of F ∗
𝑖
may

become extremely negative while training in domains where vi-

olations are relatively uncommon at first; for example, if agents

must perform some amount of exploration prior to encountering

an unsafe state. This may lead to floating point numerical issues.

Therefore, we instead use a training target of
˜F (𝑠, 𝑎) = 𝜖F = 0.01

when𝑈 (𝑠, 𝑎) = ⊤; our method only requires that 𝑡 > 𝜖F .
We additionally note two auxiliary loss functions that empiri-

cally aid the training process. First, due to the network architecture,

gradients do not propagate to all individual shields for every train-

ing example, leading to “floating” values of F𝑖 . We counteract this

with the following determinism loss.

LF-det (𝑠, 𝑎) =
∑︁
𝑖∈𝐼

(
F𝑖 (𝑠, 𝑎𝑖) − Round𝑡,𝜖F (F𝑖 (𝑠, 𝑎𝑖))

)
2

Where Round𝑡,𝜖F rounds values greater than 𝑡 to 1, and values

less than 𝑡 to 𝜖F .
Finally, we would like to discourage the network from learning

∀𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴, 𝐷 (𝑠, 𝑎) = ˜F (𝑠, 𝑎), as otherwise there is little incentive
for F𝑖 (𝑠, 𝑎𝑖) = 1 for more than one individual action per state. We

accomplish this by adding a nonredundancy loss:

LF-nr (𝑠, 𝑎) =(
Clamp[1,∞) (StopGrad(min

𝑖∈𝐼
F𝑖 (𝑠, 𝑎𝑖)) + 𝐷 (𝑠, 𝑎)) − 1

)
2

Note that StopGrad acts as the identity, with the anomalous

behavior that
𝛿StopGrad(𝑥)

𝛿𝑥
= 0.

Intuitively, if both min𝑖∈𝐼 F𝑖 (𝑠, 𝑎𝑖) = 1 and 𝐷 (𝑠, 𝑎) = 1, the

𝐷 (𝑠, 𝑎) = 1 is redundant. The above loss function pushes 𝐷 (𝑠, 𝑎) to
be decreased, without affecting F𝑖 (𝑠, 𝑎𝑖).

Our final loss function for training F is as follows:

LF−complete =

E(𝑠,𝑎)∼𝐵
[
LF (𝑠, 𝑎) + 𝛼detLF-det (𝑠, 𝑎) + 𝛼nrLF-nr (𝑠, 𝑎)

]
Where 𝐵 is a replay buffer containing encountered states and

actions, as well as the necessary information to compute
˜F (𝑠, 𝑎).

We use 𝛼det = 𝛼nr = 0.01. We perform gradient-based optimization

on this loss function, as described in the Hyperparameters section.
4

4.2 MAPPO
Action masking while learning a shield complicates the underlying

reinforcement learning process, as the environment appears nonsta-

tionary from the agent’s perspective due to the continually evolving

shields, in addition to any nonstationarity from the perspective of

each agent due to the other agents’ evolving policies.

In particular, when one action is favored during MAPPO train-

ing, its probability continually increases in the policy; after many

training steps, we have observed the favored action being on the

order of 10
200

times more likely than the next action. If the shield

later learns that this action is unsafe, the effect of selecting an ac-

tion that was previously so unlikely causes catastrophic gradient

magnitudes and floating point errors.

We protect against this by preventing the action probabilities

from becoming so imbalanced in the first place. The usual method

of adding an entropy loss does not fully protect against this; two

actions may be relatively likely, leading to a substantial amount

of entropy despite the presence of other actions with infinitesimal

probability. When both relatively probable actions are marked as

unsafe, the catastrophic update problem will still manifest.

Therefore, in addition to the entropy loss, we add a new clipping

operation to the training objective. Let 𝜋𝑖 (𝑎𝑖 |𝑠) = Softmax𝑎𝑖 ∈𝐴𝑖

𝜋∗
𝑖
(𝑎𝑖 |𝑠) be the policy probabilities, obtained using the softmax

activation function on unconstrained neural network 𝜋∗
𝑖
.

Let LPPO (𝑠, 𝑎) be the standard PPO loss function [19]. We trun-

cate the loss to limit the imbalance in the policy logits to Δ.5

L𝑃𝑃𝑂−Δ (𝑠, 𝑎𝑖) =

StopGrad[LPPO (𝑠, 𝑎)]
𝐴(𝑎 |𝑠) > 0 ∧
𝜋∗𝑖 (𝑎𝑖 |𝑠) > min

𝑎′
𝑖

𝜋∗𝑖 (𝑎
′
𝑖 |𝑠) + Δ

StopGrad[LPPO (𝑠, 𝑎)]
𝐴(𝑎 |𝑠) < 0 ∧
𝜋∗𝑖 (𝑎𝑖 |𝑠) < max

𝑎′
𝑖

𝜋∗𝑖 (𝑎
′
𝑖 |𝑠) − Δ

LPPO (𝑠, 𝑎) otherwise

We use Δ = 20 in our experiments.
6

Finally, we add a loss to train the logits of unsafe actions to equal

that of the worst safe action:

LUS (𝑠) =∑︁
𝑖∈𝐼

∑︁
𝑎𝑖 ∈𝐴𝑖\H𝑖 (𝑠)

(
𝜋∗𝑖 (𝑎𝑖 |𝑠) − StopGrad

[
min

𝑎′
𝑖
∈H𝑖 (𝑠)

𝜋∗𝑖 (𝑎
′
𝑖 |𝑠)

])
2

5 EXPERIMENTS
We implemented our method for two domains, as shown in Fig-

ure 1—a cooperative gridworld navigation task, and a more com-

plex soup preparation task based on the game “Overcooked”. In

4
Gradients are not propagated through the non-differentiable function Round. For

min and max, gradients are passed through to the extreme element.

5
Similarly to L𝑃𝑃𝑂

, this may be written with min and Clamp; we use an explicit

piecewise version here for clarity.

6
We speculate that such a modification is likely unnecessary if a method based on

Q-learning is used, as all actions’ Q-values are trained to a specific target, rather than

continually pushed in one direction as in policy-gradient methods. Existing shielding

work [7, 14] uses Q-learning with little modification.

Figure 1: Evaluation environments. (Left) Gridworld naviga-
tion domain; agents start in randompositions andmust reach
their respective goals. (Right) Overcooked domain; agents
must cooperate to cook an onion soup dish in a cramped
kitchen.

both cases, the agent is not given any model of the environment,

and must learn the safety specification of collision avoidance from

scratch, only receiving feedback when it violates the specification.

In the navigation task, agents receive a modest negative reward

when bumping into a wall, a large negative reward when colliding

into each other, a large positive reward when both agents reach the

goal, and a small negative reward if none of these actions occur.

The episode ends upon colliding with the other agent or reaching

the goal. In the Overcooked task, agents receive rewards when

they perform actions that contribute to order fulfillment, such as

putting onions on the stove or plating a complete dish. There is

no reward as a result of a collision. Both tasks are undiscounted

and use a horizon of 500 time steps. The Overcooked task uses two

layouts—the “Cramped Room” layout in which agents are in a 2x3

cell area, and the “Coordination Ring” layout in which agents share

a 3x3 area with a counter in the middle.

We compare our method to unshielded MAPPO. Theoretically,

agents should learn to avoid unsafe actions in both domains even

without shielding—the navigation task imposes a large negative

reward for unsafe actions; in Overcooked, colliding with the other

chef accomplishes nothing and thus decreases the total reward

that may be achieved in the limited time. We also compare to the

baseline of reward augmentation, where a large negative reward is

added when an unsafe action occurs.

All domains were run with 10 trials; extended hyperparameters

are described in the Appendix. The results are shown in Figures

2 and 3. As the results demonstrate, in all domains, our learned

shielding method converges to zero unsafe actions per episode.

In the gridworld domain, our method outperforms the other

methods for learning the task-specific reward function; because of

the small negative reward at each timestep, agents initially learn the

local optimum where they collide with each other to immediately

end the episode. Our method quickly learns that this is unsafe, and

“kicks out” the agents from this local optimum, while the other

methods must find the global optimum by chance before they stop

taking unsafe actions.

In Overcooked, there is much less of a reward incentive to act

safely, so the unshielded agents continually collide late into the

training process. Agents with an augmented reward signal fail to

learn a useful policy, illustrating the challenge of attacking safety

using only reward shaping—too strong a reward signal, and agents

are “afraid” to move at all. Finally, the learned shielding method is

Figure 2: Average number of unsafe actions and reward per
episode, and standard error over 10 trials for the gridworld-
collision domain, “ISR” layout. Episode reward represents
the original reward from the environment, prior to augmen-
tation. Values are smoothed using a moving window average
of 10K steps.

able to achieve substantial reward in this domain, nearly matching

the reward obtained by the unshielded agent—it may act slightly too

conservatively to achieve the full reward potential. Nevertheless,

our method achieves a balance of maintaining safety without acting

so conservatively that it fails to achieve reward.

6 DISCUSSION & FUTUREWORK
As discussed in Section 3, our method is designed for environments

where for every state, there exists some safe action. This assump-

tion does not necessarily apply to all environments; for example,

in some domains with momentum, no action can prevent the agent

from violating a safety specification in some states. In particular,

many larger or continuous state-space environments require con-

sideration of this. We believe that our method may still be able to

work in such domains, by changing
˜F , the learning target of F ,

such that actions that transition to deadlock states—states with no

safe actions available—are themselves unsafe. This could be accom-

plished by separately learning a safety value function to predict

such states; in the multiagent setting, this could be implemented

with a sequential update procedure [12], or through an adaptation

of a QPLEX-like structure [24]. Given this modified
˜F , it may be

possible to re-use the remainder of our shield learning method to

solve the shield learning problem in more general domains. We

leave further study of this to future work.

(a) “Cramped Room” layout

(b) “Coordination Ring” layout

Figure 3: Results for Overcooked over 10 trials.

Similarly, our implementation requires full observability in coop-

erative environments.We are not confident that a naive extension to

partially observable domains through the use of recurrent networks

would be theoretically justified, as this would imply a more complex

relationship between individual and joint safety values. Despite the

undecidability of decentralized reactive synthesis in general [22],

prior work has synthesized shields in a useful subset of partially

observable environments, with an available model [14]. Similarly,

we believe that there may be a useful subset of partially observable

environments where it is possible to learn a shield without a model.

Further work is required to create a well-grounded method for

handling partial observability or mixed cooperative-competitive

environments.

7 CONCLUSION
We have presented, to our knowledge, the first method that extends

shielding to multi-agent domains where no model of the environ-

ment is provided. We introduce a method of constraining a set of

function approximators to follow the IGS principle, and demon-

strate several optimizations that allow policy gradient methods to

handle the nonstationary effects of a learned shield. Our shield

learning method performs well on several domains, learning to

safely obtain high task-specific performance.

HYPERPARAMETERS
We further describe the hyperparameters for our training process.

For both environments, all function approximators are instanti-

ated as neural networks with three hidden layers of size 1024, 1024,

and 256, with relu activations [9] and Xavier normal initializations

[8]. We maintain a replay buffer with all observed transitions, up

to the 2 × 10
6
step limit. Every 1000 steps, we perform 10 shield

training steps with a minibatch size of 160 (16 sequences of length

10 each). Every 16 episodes, we perform 32 MAPPO training steps

with a minibatch size of 320 (32 sequences of length 10 each). We

use a PPO clipping parameter of 0.1, GAE 𝜆 = 0.95, entropy loss

coefficient of 0.1, and Δ = 20. All other losses, besides LF
and

L𝑃𝑃𝑂−Δ
have a coefficient of 0.01. We use the Adam optimizer [11]

with a learning rate of 10
−4

for both the learned shielding module

and the policy module.

No formal search procedure was utilized to obtain these hyper-

parameters; they were selected for the gridworld domain based on

observed stable training and adequate performance for all agents,

and re-used for Overcooked without further tuning. The sole mod-

ification for Overcooked is that all neural networks for the grid-

world domain use a one-hot transformation of several state vari-

ables as input, while the state provided by Overcooked is passed

to all networks without transformation. However, other domains

that are more complex, or distinct from each other, may require

environment-specific tuning.

REFERENCES
[1] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. 2017. Constrained

Policy Optimization. In Proceedings of the 34th International Conference onMachine
Learning (Proceedings of Machine Learning Research, Vol. 70), Doina Precup and

Yee Whye Teh (Eds.). PMLR, Sydney, NSW, Australia, 22–31. https://proceedings.

mlr.press/v70/achiam17a.html

[2] Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott

Niekum, and Ufuk Topcu. 2018. Safe reinforcement learning via shielding. In

https://proceedings.mlr.press/v70/achiam17a.html
https://proceedings.mlr.press/v70/achiam17a.html

Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32. AAAI Con-
ference on Artificial Intelligence, New Orleans, LA, 10.

[3] Roderick Bloem, Bettina Könighofer, Robert Könighofer, and Chao Wang. 2015.

Shield synthesis: Runtime enforcement for reactive systems. In Tools and Algo-
rithms for the Construction and Analysis of Systems: 21st International Conference,
TACAS 2015, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2015, London, UK, April 11-18, 2015, Proceedings 21. Springer,
International Conference on Tools and Algorithms for the Construction and

Analysis of Systems, London, UK, 533–548.

[4] Tianshu Chu, Jie Wang, Lara Codecà, and Zhaojian Li. 2020. Multi-Agent Deep

Reinforcement Learning for Large-Scale Traffic Signal Control. IEEE Transactions
on Intelligent Transportation Systems 21, 3 (2020), 1086–1095. https://doi.org/10.

1109/TITS.2019.2901791

[5] Jack Clark and Dario Amodei. 2016. Faulty reward functions in the wild. https:

//openai.com/research/faulty-reward-functions

[6] Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem

(Eds.). 2018. Handbook of Model Checking. Springer International Publishing,
New York, NY. https://doi.org/10.1007/978-3-319-10575-8

[7] Ingy ElSayed-Aly, Suda Bharadwaj, Christopher Amato, Rüdiger Ehlers, Ufuk

Topcu, and Lu Feng. 2021. Safe Multi-Agent Reinforcement Learning via Shield-

ing. In Proceedings of the 20th International Conference on Autonomous Agents
and MultiAgent Systems (Virtual Event, United Kingdom) (AAMAS ’21). Interna-
tional Foundation for Autonomous Agents and Multiagent Systems, Richland,

SC, 483–491.

[8] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training

deep feedforward neural networks. In Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics (Proceedings of Machine Learning
Research, Vol. 9), Yee Whye Teh and Mike Titterington (Eds.). PMLR, Chia Laguna

Resort, Sardinia, Italy, 249–256. https://proceedings.mlr.press/v9/glorot10a.html

[9] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Deep Sparse Rectifier

Neural Networks. In Proceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics (Proceedings of Machine Learning Research,
Vol. 15), Geoffrey Gordon, David Dunson, and Miroslav Dudík (Eds.). PMLR, Fort

Lauderdale, FL, USA, 315–323. https://proceedings.mlr.press/v15/glorot11a.html

[10] Shangding Gu, Jakub Grudzien Kuba, Yuanpei Chen, Yali Du, Long Yang, Alois

Knoll, and Yaodong Yang. 2023. Safe multi-agent reinforcement learning for

multi-robot control. Artificial Intelligence 319 (2023), 103905. https://doi.org/10.

1016/j.artint.2023.103905

[11] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization.

[12] Zeyang Li and Navid Azizan. 2024. Safe Multi-Agent Reinforcement Learning

with Convergence to Generalized Nash Equilibrium. arXiv:2411.15036 [cs.LG]

https://arxiv.org/abs/2411.15036

[13] Daniel Melcer, Christopher Amato, and Stavros Tripakis. 2022. Shield Decen-

tralization for Safe Multi-Agent Reinforcement Learning. Advances in Neural
Information Processing Systems 36 (2022), 13.

[14] Daniel Melcer, Christopher Amato, and Stavros Tripakis. 2024. Shield Decomposi-

tion for Safe Reinforcement Learning in General Partially ObservableMulti-Agent

Environments. In Reinforcement Learning Conference. RLJ, Amherst, MA, USA, 8.

[15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,

Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg

Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen

King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.

Human-level control through deep reinforcement learning. Nature 518, 7540
(Feb. 2015), 529–533. https://doi.org/10.1038/nature14236

[16] Bei Peng, Tabish Rashid, Christian A. Schroeder de Witt, Pierre-Alexandre Kami-

enny, Philip H. S. Torr, Wendelin Böhmer, and ShimonWhiteson. 2021. FACMAC:

Factored Multi-Agent Centralised Policy Gradients. arXiv:2003.06709 [cs.LG]

https://arxiv.org/abs/2003.06709

[17] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Far-

quhar, Jakob Foerster, and Shimon Whiteson. 2020. Monotonic Value Function

Factorisation for Deep Multi-Agent Reinforcement Learning. J. Mach. Learn. Res.
21, 1, Article 178 (jan 2020), 51 pages.

[18] Alex Ray, Joshua Achiam, and Dario Amodei. 2017. Benchmarking Safe Explo-

ration in Deep Reinforcement Learning. https://cdn.openai.com/safexp-short.pdf

[19] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

2017. Proximal Policy Optimization Algorithms. arXiv:1707.06347 [cs.LG]

https://arxiv.org/abs/1707.06347

[20] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vini-

cius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z. Leibo, Karl

Tuyls, and Thore Graepel. 2017. Value-Decomposition Networks For Cooperative

Multi-Agent Learning. arXiv:1706.05296 [cs.AI] https://arxiv.org/abs/1706.05296

[21] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An Intro-
duction. A Bradford Book, Cambridge, MA, USA.

[22] Stavros Tripakis. 2004. Undecidable Problems of Decentralized Observation and

Control on Regular Languages. Inform. Process. Lett. 90, 1 (April 2004), 21–28.
https://doi.org/10.1016/j.ipl.2004.01.004

[23] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, An-

drew Dudzik, Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds,

Petko Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja

Huang, Laurent Sifre, Trevor Cai, John P. Agapiou, Max Jaderberg, Alexander S.

Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David Budden, Yury

Sulsky, James Molloy, Tom L. Paine, Caglar Gulcehre, Ziyu Wang, Tobias Pfaff,

Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney,

Oliver Smith, Tom Schaul, Timothy Lillicrap, Koray Kavukcuoglu, Demis Has-

sabis, Chris Apps, and David Silver. 2019. Grandmaster level in StarCraft II

using multi-agent reinforcement learning. Nature 575, 7782 (Nov. 2019), 350–354.
https://doi.org/10.1038/s41586-019-1724-z

[24] Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. 2021.

QPLEX: Duplex Dueling Multi-Agent Q-Learning. arXiv:2008.01062 [cs.LG]

https://arxiv.org/abs/2008.01062

[25] Peter R. Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik

Subramanian, Thomas J. Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eck-

ert, Florian Fuchs, Leilani Gilpin, Piyush Khandelwal, Varun Kompella, HaoChih

Lin, Patrick MacAlpine, Declan Oller, Takuma Seno, Craig Sherstan, Michael D.

Thomure, Houmehr Aghabozorgi, Leon Barrett, Rory Douglas, Dion Whitehead,

Peter Dürr, Peter Stone, Michael Spranger, and Hiroaki Kitano. 2022. Outracing

champion Gran Turismo drivers with deep reinforcement learning. Nature 602,
7896 (Feb. 2022), 223–228. https://doi.org/10.1038/s41586-021-04357-7

[26] Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen,

and YiWu. 2022. The Surprising Effectiveness of PPO in Cooperative, Multi-Agent

Games. arXiv:2103.01955 [cs.LG] https://arxiv.org/abs/2103.01955

[27] Weiye Zhao, Tairan He, Rui Chen, Tianhao Wei, and Changliu Liu. 2023. State-

wise Safe Reinforcement Learning: A Survey. In Proceedings of the Thirty-Second
International Joint Conference on Artificial Intelligence, IJCAI-23, Edith Elkind

(Ed.). International Joint Conferences on Artificial Intelligence Organization,

Macao, 6814–6822. https://doi.org/10.24963/ijcai.2023/763 Survey Track.

https://doi.org/10.1109/TITS.2019.2901791
https://doi.org/10.1109/TITS.2019.2901791
https://openai.com/research/faulty-reward-functions
https://openai.com/research/faulty-reward-functions
https://doi.org/10.1007/978-3-319-10575-8
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v15/glorot11a.html
https://doi.org/10.1016/j.artint.2023.103905
https://doi.org/10.1016/j.artint.2023.103905
https://arxiv.org/abs/2411.15036
https://arxiv.org/abs/2411.15036
https://doi.org/10.1038/nature14236
https://arxiv.org/abs/2003.06709
https://arxiv.org/abs/2003.06709
https://cdn.openai.com/safexp-short.pdf
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1706.05296
https://arxiv.org/abs/1706.05296
https://doi.org/10.1016/j.ipl.2004.01.004
https://doi.org/10.1038/s41586-019-1724-z
https://arxiv.org/abs/2008.01062
https://arxiv.org/abs/2008.01062
https://doi.org/10.1038/s41586-021-04357-7
https://arxiv.org/abs/2103.01955
https://arxiv.org/abs/2103.01955
https://doi.org/10.24963/ijcai.2023/763

	Abstract
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 SMMDPs
	2.3 Mixing Functions
	2.4 Shielding

	3 Problem Statement & Method Overview
	3.1 Shield Construction
	3.2 Learning With a Shield

	4 Method Detail
	4.1 Shield learning
	4.2 MAPPO

	5 Experiments
	6 Discussion & Future Work
	7 Conclusion
	References

