
Failure Analysis of Autonomous Systems
with RL-Guided MCMC Sampling

Rory Lipkis
Intelligent Systems Division
NASA Ames Research Center

Moffett Field, CA
rory.lipkis@nasa.gov

Adrian Agogino
Intelligent Systems Division
NASA Ames Research Center

Moffett Field, CA
adrian.k.agogino@nasa.gov

ABSTRACT
Advanced autonomous systems are increasingly deployed for criti-
cal tasks but are rarely amenable to standard verification and vali-
dation techniques. Manually-refined Monte Carlo sampling is often
the only recourse for the practical assessment of system behav-
ior and the discovery of anomalies. However, this approach scales
poorly when applied to systemswith high-dimensional states, multi-
ple agents, or long time horizons: rare failures cannot be effectively
analyzed by direct sampling. We improve on previous work and
demonstrate RL-MCMC, a Monte Carlo Markov chain approach
to the efficient generation of rare system failures and the accu-
rate estimation of failure mode log-likelihood. MCMC algorithms
enable the sampling of arbitrary unnormalized distributions that
lack an explicit sampling mechanism; however, they are highly
sensitive to initialization and commonly suffer from convergence
issues. We present a method to find ideal initializations for the
MCMC sampling process with reinforcement learning, leveraging
the power of modern neural network-based policy optimization
to solve nontrivial and highly-constrained sequential tasks. By
formulating a Markov decision process (MDP) to explicitly learn
modal paths to failure, it is possible to bypass the unreliable con-
vergence phase of the MCMC algorithm and immediately generate
valid, in-distribution system failures. We assess the approach with
two simple example problems and demonstrate the accuracy and
stability of the likelihood estimation.

KEYWORDS
Reinforcement learning, Monte Carlo Markov chains, system vali-
dation, failure analysis

1 INTRODUCTION
Validation of a system under test (SUT) is the process of determin-
ing whether requirements specified in the design are met by the
implementation. Formal methods (typically model checking and
theorem proving, in their many flavors) are able to rigorously con-
firm or refute this correspondence when the system description
is relatively small and its dynamics conform to the necessary ide-
alizations [6, 7]. When these conditions cannot be met, statistical
validation (falsification) is performed instead. This requires the
tester to sample system inputs, perturbations, or transitions accord-
ing to a predetermined model, categorize the observed failures, and
estimate the overall reliability of the system.

Proc. of the Adaptive and Learning Agents Workshop (ALA 2025), Avalos, Aydeniz,
Müller, Mohammedalamen (eds.), May 19 – 20, 2025, Detroit, Michigan, USA, ala-
workshop.github.io. 2025.

The Monte Carlo approach deteriorates when sampling occurs
over higher dimensions or longer horizons. Many systems ulti-
mately fail due to unanticipated correlations; since direct sampling
explores regions in proportion to their likelihood of occurrence,
the majority of computational effort is expended in the evaluation
of near-nominal behavior. In addition, as the parameters of the per-
turbation model inform the exploration, small model errors have a
vast impact on the sampling outcome. Because of these difficulties,
it is common practice to manually bias the search toward suspected
issues, leveraging pre-knowledge of the system to expedite failure
discovery. This approach incurs the risk of missing failure modes
unforeseen by the system developers and testers.

As an alternative, reinforcement learning-informed sampling
(RLIS) is a two-stage framework that gathers and exploits informa-
tion about the state space, allowing failure modes to be discovered
with more independence and greater efficiency [10]. In the first
stage, reinforcement learning is used to find a policy that encodes
an approximation of the statistical modes of a failure likelihood
function. This policy then forms the basis of a surrogate distribu-
tion, through which the true failure probability can be estimated
by importance sampling. RLIS does not depend on any particular
learning algorithm or policy representation, making it applicable
to a wide variety of systems under test. It is also moderately robust
under uncertainty and model error: since likelihood appears as part
of an objective function, not as the property of a generative process,
the learning stage is less sensitive to unmodeled effects.

However, importance sampling is notoriously sensitive; the vari-
ance of its output can be unacceptably high or even unbounded
when the surrogate distribution differs significantly from the theo-
retical ideal [16]. Since RLIS relies on approximating the surrogate,
it is susceptible to the same instability. Accurately quantifying the
sampling error in practice is difficult due to the low magnitude
of the typical failure likelihoods, which are estimated in absolute
probability space, with 𝑝 ∈ [0, 1].

This paper vastly improves on RLIS by replacing importance
sampling with Monte Carlo Markov chain (MCMC) methods. This
family of algorithms enables an implicitly-specified distribution
to be sampled without requiring the calculation of a normalizing
constant (which is intractable in all but the simplest cases) or the
derivation of an explicit generation mechanism. MCMC methods
are highly sensitive to initialization, particularly when portions of
the domain are infeasible, and commonly exhibit a prolonged phase
of convergence during which the output is far from the mode of the
distribution and is effectively invalid. As a result, they are not suited
to the problem of failure discovery, which involves optimizing over
a highly discontinuous objective.

However, we can use the RLIS failure policy to accelerate the
MCMC algorithm, since it is explicitly formulated to learn themodes
of the relevant distribution (the probability of system transitions
conditioned on eventual failure). The learned policy is used as a
bridge distribution to directly sample the theoretically ideal surro-
gate distribution using the method of path sampling. Notably, the
failure probability estimate and its confidence bounds are formed
directly in log-probability space, resulting in significantly lower
variance and more reliable estimation. These developments vastly
improve the accuracy and stability of the framework.

2 BACKGROUND
We consider a simulation consisting of a black box SUT and a
stochastic environment, which interact over a fixed time horizon.
At each point in time, the simulation is summarized by a state
𝑠 ∈ S; the internal state of the SUT does not need to be directly
observable, but system failure must correspond to some subset
of simulation states F ⊂ S. The environment consists of a set
of external variables collected into the random variable 𝑋𝑡 ∈ X,
where𝑋𝑡 ∼ 𝑝𝑡 (𝑥) and 𝑥 may be multidimensional. In this paper, we
consider only time-stationary distributions; the subscript 𝑡 serves to
differentiate step-wise variables from their multi-step counterparts,
which are bolded for clarity. It is assumed that all randomness can
be externalized and captured in the specification of the environment
(i.e., the SUT is either deterministic or de-randomizable). It should
also be possible to specify a rough distance-to-failure metric 𝑑 (𝑠),
a scalar function that is non-negative and attains a value of zero
upon failure; this value serves to guide the learning and sampling
processes. Note that the distance metric is specific to the observable
simulation variables and does not provide insights into the behavior
of the SUT.

As an example, we take as the SUT a generic aircraft collision
avoidance module: a large software component containing complex
interactions between program logic, models, and data, whose func-
tion is to run in real-time aboard an aircraft, monitor the surround-
ing aircraft, and occasionally provide the pilot with recommended
maneuvers to lower the risk of collision. This sort of heterogeneous
system presents a realistic, if daunting, verification challenge. The
simulation might consist of various aircraft in an airspace, all run-
ning (and dutifully obeying) the collision avoidance module. The
simulation state would contain the positions and velocities of the
aircraft, while the environment would describe factors external to
the SUT such as pilot controls (when not under recommendation),
wind gusts, or sensor noise. A sensible distance metric would be
the minimum pairwise distance between aircraft; failure occurs
if 𝑑 = 0. The metric provides a high-level signal, but the internal
mechanisms of the SUT are unobservable and its paths to failure
may be as complex and hybrid as the system itself.

For each episode of simulation, the state is initialized at some
𝑠0 ∈ S. Then, a sample 𝑥𝑡 ∈ X is drawn from the environment and
the simulation is advanced. The environment-system update step
is repeated for a fixed number of time steps, or until failure. We
refer to this as the rollout of the environment; a given sequence of
environment samples 𝒙 = [𝑥1, 𝑥2, . . . 𝑥𝑇] ∈ X𝑇 is a trace.

Since the failure region F may be arbitrary complex, it is de-
fined implicitly by an indicator function 1F (𝑠) ∈ {0, 1}. For a fixed

initialization 𝑠0, one can also consider the function 𝑓 (𝒙), which
indicates whether or not failure occurred at any point across the
rollout of the trace 𝒙 .

3 SAMPLING FRAMEWORK
Let 𝑿 = [𝑋1, 𝑋2, . . . 𝑋𝑇] be the random trace corresponding to a
𝑇 -step rollout of the environment. Then, the result of 𝑓 (𝑿), as
previously defined, is a binary random variable indicating whether
or not a failure occurred. The probability of failure is calculated as

𝜇 = 𝑃 (𝑓 (𝑿) = 1) = E[𝑓 (𝑿)] =
∫
X𝑇

𝑓 (𝒙)𝑝 (𝒙) 𝑑𝒙 ,

where 𝑝 (𝒙) = ∏𝑇
𝑡=1 𝑝𝑡 (𝑥𝑡) is the joint probability distribution of

the trace and 𝑑𝒙 = 𝑑𝑥1 ∧ · · · ∧ 𝑑𝑥𝑇 . Regular statistical validation is
equivalent to Monte Carlo integration, in which

E[𝑓 (𝑿)] ≈ 1
𝑛

𝑛∑︁
𝑖=1

𝑓 (𝒙 (𝑖)) ,

where sample traces 𝒙 (𝑖) are drawn from 𝑿 . When failures are rare
and difficult to elicit, the estimate is likely to be zero, which may
not be a particularly useful result.

RLIS mitigates the elicitation problem by constructing a surro-
gate distribution𝑞(𝒙) using reinforcement learning and re-weighting
the samples to correct for their disproportionate contribution to
the probability estimate, according to the identity

𝜇 =

∫
X𝑇

𝑓 (𝒙) 𝑝 (𝒙)
𝑞(𝒙) 𝑞(𝒙) 𝑑𝒙 = E

[
𝑓 (𝑿∗) 𝑝 (𝑿

∗)
𝑞(𝑿∗)

]
,

where 𝑿∗ ∼ 𝑞(𝒙). The surrogate is formed by learning paths to
failure in a setting where exploration is largely decoupled from the
generative model 𝑝 (𝒙), and then recentering the sampling model
around these paths. A related approach is developed in [12], where
Bayesian methods are used to refine a surrogate for importance
sampling.

While this approach can be effective in low-dimensional settings,
importance sampling has a severe limitation: the sample variance
tends to increase dramatically as the surrogate distribution differs
from the ideal. This variance can vastly overwhelm the estimate, in
the worse case causing it to fall outside the valid interval 𝑝 ∈ [0, 1].
In RLIS, the high dimensionality of the distribution (with scales with
both the number of environment variables and the time horizon)
tends to magnify the difference between the distributions.

The variance of an importance sampling scheme is given by

𝜎2 = E

[(
𝑓 (𝑿∗) 𝑝 (𝑿

∗)
𝑞(𝑿∗)

)2]
− 𝜇2

=

∫
X𝑇

𝑓 (𝒙)2 𝑝 (𝒙)
2

𝑞(𝒙)2
𝑞(𝒙) 𝑑𝒙 − 𝜇2

=

∫
X𝑇

(
𝑓 (𝒙) 𝑝 (𝒙)

𝑞(𝒙) − 𝜇
)
𝑓 (𝒙)𝑝 (𝒙) 𝑑𝒙 .

The ideal variance-minimizing surrogate is thus

𝑞∗ (𝒙) = 𝑓 (𝒙)𝑝 (𝒙)
𝜇

.

This distribution is not directly realizable, since it depends on 𝜇,
the variable we would like to estimate. However, it can be related to
the fundamental problem of stress testing. Consider the conditional
probability distribution function of a trace 𝒙 given eventual failure.
By Bayes’ theorem, this can be written as

𝑝 (𝒙 | 𝑓 (𝒙)) = 𝑃 (𝑿 = 𝒙 | 𝑓 (𝑿) = 1)

= 𝑃 (𝑓 (𝑿) = 1 | 𝑿 = 𝒙) 𝑃 (𝑿 = 𝒙)
𝑃 (𝑓 (𝑿) = 1)

=
𝑓 (𝒙)𝑝 (𝒙)

𝜇
.

From this perspective, it is clear that the conditional PDF is propor-
tional to the quantity 𝑞(𝒙) = 𝑓 (𝒙)𝑝 (𝒙). If it were possible sample
the normalized form of 𝑞(𝒙), we could perform importance sam-
pling with an ideal surrogate and compute a perfect estimate of the
failure likelihood. However, this would require first knowing the
normalizing constant.

This motivates an alternative approach that abandons the mech-
anism of importance sampling. If 𝑞(𝒙) could instead be sampled
directly in its unnormalized form, those samples would be identical
in distribution to the conditional PDF. An adapted procedure could
then be used to integrate over the distribution with its own samples.
An elegant resolution to the problem is provided by Monte Carlo
Markov chain (MCMC) methods.

4 MCMC SAMPLING
MCMC sampling involves constructing a Markov chain whose sta-
tionary distribution is proportional to a given function. Crucially,
this allows an unnormalized PDF of arbitrary complexity to be
sampled without ever calculating the normalization or deriving
an explicit sampling mechanism. In many applications, such as
Bayesian computation or the analysis of quantum systems, normal-
ization factors are practically uncomputable.

In the symmetric random-walk Metropolis algorithm, a special
case of the general MCMC formulation, the Markov chain is ini-
tialized with a value 𝒙 ∈ X𝑇 . At each iteration, a transition Δ𝒙 is
drawn from a symmetric transition distribution to form a candidate
value 𝒙′ = 𝒙 + Δ𝒙 . The candidate is accepted with probability

𝑃acc (𝒙 → 𝒙′) = min
(
1,

𝑞(𝒙′)
𝑞(𝒙)

)
.

If accepted, 𝒙′ becomes the next value in the chain; otherwise,
𝒙 is reused. The choice of transition distribution can determine
the efficacy of the process. The environment distribution 𝑝 (𝒙), if
appropriately symmetrized, provides a natural candidate.

Note that since 𝑞(𝒙) is only evaluated in ratio form, the constant
of proportionality is irrelevant. It can be shown that under a wide
range of conditions, this process eventually converges in distribu-
tion to a sampling of 𝑞∗ (𝒙), the normalized distribution [14], which
is here equal to the conditional distribution 𝑝 (𝒙 | 𝑓 (𝒙)).

The period of convergence for a MCMC process is commonly
referred to as burn-in. Since the initial valuemay be far from the bulk
of the probability mass of 𝑞∗ (𝒙), the process requires a high number
of iterations before the chain begins to resemble IID samples. In the
early stages of the algorithm, the chain is preoccupied with moving
towards regions of higher probability. As a result, many common
convergence metrics rely on autocorrelation heuristics, but the lack

of a ground truth and the general difficulty of comparing high-
dimensional distributions make this assessment difficult.

For the stress-testing problem, the distribution may be highly
irregular, consisting of large discontinuities and plateaus. Because
of the algorithm’s acceptance criterion, the chain is effectively
performing a noisy hill-climbing procedure. As such, it must be
initialized with a valid failure trace, and it may fail to converge if
the trace is too far from the mode of the distribution.

5 ADAPTIVE STRESS TESTING
An optimal MCMC initialization can be found with reinforcement
learning. The adaptive stress testing (AST) framework formulates
stress testing as an MDP whose solutions represent the highest
likelihood failure traces [9]. This approach has proven useful in a
variety of applications, including the analysis of aircraft collision
avoidance software [9, 11], pedestrian avoidance procedures for
autonomous vehicles [1, 5], trajectory planners for small unmanned
aircraft [8], aircraft taxiing algorithms [4], and flight management
systems [13].

Rather than sampling from the environment, AST explicitly opti-
mizes over environment values to find the most likely failure events
in a near black box SUT. For a𝑇 -step sequence of simulation states,
the joint likelihood is given by

𝑝 (𝑠0, . . . , 𝑠𝑇) = 𝑝 (𝑠0)
𝑇−1∏
𝑡=0

𝑝 (𝑥𝑡)

due to the Markov property and assumption that randomness has
been externalized to the environment. For a given initialization 𝑠0,
the high-level goal of AST is then to solve the optimization problem

max
𝑥0,...,𝑥𝑇 −1

𝑇−1∏
𝑡=0

𝑝 (𝑥𝑡)

subject to 𝑠𝑇 ∈ F .

This is precisely equivalent to maximizing the conditional PDF,
since within the feasible region F ,

𝑞∗ (𝒙) = 𝑓 (𝒙)𝑝 (𝒙)
𝜇

∝ 𝑝 (𝒙) .

Because the constraint may be arbitrarily complex (recall that F
is defined implicitly in 𝒙), the problem benefits from a non-classical
optimization technique. In particular, the MDP formulation enables
a reinforcement learning approach. Figure 1 illustrates the high-
level AST architecture. At each time step, the reinforcement learner
observes the state 𝑠 , selects an environment instance 𝑥𝑡 , advances
the simulation to state 𝑠′, and receives a reward

𝑟 (𝑠, 𝑥𝑡 , 𝑠′) = log𝑝 (𝑥𝑡) + Δ(𝑠, 𝑠′) + 𝑟 𝑓 · 1F (𝑠) ,
where 𝑟 𝑓 is a bonus for reaching a failure state and

Δ(𝑠, 𝑠′) ∝ 𝑑 (𝑠) − 𝑑 (𝑠′)
is a potential-based reward-shaping term designed to guide the
learning agent. This amounts to a softened version of the origi-
nal optimization, as the constraint is replaced by a penalty; the
relaxation does not change the theoretical optimum.

The scope can be expanded to learn a failure policy 𝜋 , which
maps simulation states to environment values that induce the likeli-
est path to failure. This is a standard reinforcement learning policy

with actions corresponding to (adversarial) instances of the environ-
ment. It amounts to a latent representation of multiple independent
failure modes, reachable through successive applications of the
policy over the time horizon.

A wide variety of algorithms can be used to solve the AST MDP.
Deep reinforcement learning offers an natural solution when state
and environment spaces are high-dimensional. Due to the ability of
neural networks to interpolate and generalize, this approach allows
failure paths to be approximated between samples.

The output of AST is a trace 𝒙∗ or trace-generating policy 𝜋∗

that corresponds to the mode of 𝑞∗ (𝒙). Because of this property,
it can directly seed the MCMC process in the region of highest
probability mass, mitigating the burn-in phase. One is then able
to immediately generate a stream of failure traces, which can be
treated as samples from the conditional distribution 𝑝 (𝒙 | 𝑓 (𝒙)).
These samples can be used to characterize the failure modes in both
quantitative and qualitative analyses. The basic process is described
in Algorithm 1.

Algorithm 1 RL-guided MCMC sampling

Input: 𝒙∗, 𝑁 ⊲ Initialization from AST
Output: samples
1: samples← {} ⊲ Collection of samples
2: 𝒙 ← 𝒙∗

3: 𝑞 ← 𝑝 (𝒙∗)
4: for 𝑖 = 1 to 𝑁 do
5: Δ𝒙 ← Sample[𝑝 (𝒙)] ⊲ Candidate transition
6: 𝒙′ ← 𝒙 + Δ𝒙
7: 𝑞′ ← 𝑝 (𝒙′)
8: if IsFailure(𝒙′) then
9: 𝛼 ← Sample[Unif(0, 1)]
10: if 𝛼 < 𝑞′/𝑞 then ⊲ Acceptance criterion
11: 𝒙 ← 𝒙′

12: 𝑞 ← 𝑞′

13: end if
14: end if
15: append 𝒙 to samples
16: end for
17: return samples

6 PROBABILITY ESTIMATION
The remaining task is to estimate the failure probability 𝜇 using
MCMC samples. This presents a subtle challenge: since the sam-
ples are realizations of the random variable corresponding to the
conditional distribution of interest, they cannot be directly used to
calculate the normalizing constant of that same distribution1. In
other words, MCMC methods allow us to compute any expectation
with respect to the unnormalized distribution 𝑞(𝒙); the problem is
determining what quantity yields in expectation the normalizing
constant.

To compute 𝜇, we make use of a powerful application of MCMC
known as path sampling, which derives from the thermodynamic

1In the univariate setting, the normalization could be roughly estimated via the empir-
ical CDF, but this approach does not generalize to higher dimensions.

integration method of computational physics [2]. This approach re-
quires us to specify a continuous transformation from a distribution
with a known normalization to the target distribution. The desired
solution is then obtained via a path integral through parameter
space.

Consider the unnormalized probability distribution function

𝑞𝜃 (𝒙) = exp
(
𝛽𝑑 (𝒙)
ln𝜃

)
𝑝 (𝒙) ,

where 𝑑 (𝒙) represents the lowest value of the distance-to-failure
metric 𝑑 achieved across the trace 𝒙 . The hyperparameter 𝛽 > 0 is
chosen such that its product with 𝑑 (𝒙) is roughly O(1) across the
domain. The exponential term represents an analytic continuation
of the indicator function 𝑓 (𝒙) such that

lim
𝜃→0

𝑞𝜃 (𝒙) = 𝑝 (𝒙) and lim
𝜃→1

𝑞𝜃 (𝒙) = 𝑓 (𝒙)𝑝 (𝒙) .

The presence of 𝑑 (𝒙) in the expression allows the transition be-
tween the two distributions to be informed by the shape of the
failure mode; it softens the discontinuities inherent to the original
conditional distribution. The normalized probability distribution
function is

𝑞∗
𝜃
(𝒙) = 𝑞𝜃 (𝒙)

𝑧𝜃
,

where 𝑧𝜃 =
∫
𝑞𝜃 (𝒙) 𝑑𝒙 . By construction, 𝑧0 = 1 and 𝑧1 = 𝜇. From

the definition of 𝑧𝜃 , it follows that

𝑑

𝑑𝜃
ln 𝑧𝜃 = E𝑿

[
𝑑

𝑑𝜃
ln𝑞𝜃 (𝑿)

]
= −E𝑿

[
𝛽 𝑑 (𝑿)
𝜃 ln(𝜃)2

]
,

where 𝑿 ∼ 𝑞∗
𝜃
(𝒙) via MCMC sampling. This identity is integrated

to yield

ln 𝜇 = ln
(
𝑧1
𝑧0

)
=

∫ 1

0

𝑑

𝑑𝜃
ln 𝑧𝜃 𝑑𝜃

= −E𝑿 ,Θ

[
𝛽 𝑑 (𝑿)
Θ ln(Θ)2

]
,

where the expectation is performed jointly over variables 𝑿 and
Θ ∼ U(0, 1). This value is realized with the double-loop estimator

l̂n 𝜇 =
1
𝑚

𝑚∑︁
𝑖=1

𝑢

(
𝜃 (𝑖)

)
,

𝑢 (𝜃) = − 𝛽

𝜃 ln (𝜃)2
· 1
𝑛

𝑛∑︁
𝑗=1

𝑑

(
𝒙 (𝑗)
𝜃

)
,

where 𝜃 (𝑖) are drawn randomly from the range (0, 1) and 𝒙 (𝑗)
𝜃

are
the output of a MCMC sampling of 𝑞∗

𝜃
(𝒙). Since the estimate is

formed directly as a logarithm, it is well suited to the computation
of small probabilities.

Along with the estimate of the failure log-probability, the sample
variance is calculable as

𝜍2 =
1

𝑚(𝑚 − 1)

𝑚∑︁
𝑖=1

[
𝑢 (𝜃 (𝑖)) − l̂n 𝜇

]2
,

where the 𝑚 − 1 term is the standard bias correction. The full
procedure is described in Algorithm 2. The estimator is theoretically
unbiased; as the number of samples increases, the distribution of
the estimator should approach a normal distribution centered on

simulation

SUT environment Einteraction reinforcement
learner

AST reward
function

disturbance 𝑥𝑡

reward 𝑟

state 𝑠

transition probability 𝑝 ,
failure event 𝑓 , distance 𝑑

Figure 1: Adaptive stress testing (AST) architecture. An adversarial reinforcement learning agent chooses realizations of a
stochastic environment to elicit the likeliest possible failure in the system under test.

Algorithm 2 Path sampling estimation

Input: 𝒙∗, 𝛽 ,𝑀 , 𝑁 ⊲ Initialization from AST
Output: l̂n 𝜇, 𝜍2
1: 𝒖 ← {}
2: for 𝑖 = 1 to𝑀 do
3: 𝜃 ← Sample[Unif(0, 1)]
4: 𝒅 ← {}
5: 𝒙 ← 𝒙∗

6: 𝑞 ← 𝑝 (𝒙∗)
7: for 𝑗 = 1 to 𝑁 do
8: Δ𝒙 ← Sample[𝑝 (𝒙)] ⊲ Candidate transition
9: 𝒙′ ← 𝒙 + Δ𝒙
10: 𝑞′ ← exp(𝛽𝑑 (𝒙′)/ln𝜃)𝑝 (𝒙′) ⊲ Bridge surrogate
11: 𝛼 ← Sample[Unif(0, 1)]
12: if 𝛼 < 𝑞′/𝑞 then ⊲ Acceptance criterion
13: 𝒙 ← 𝒙′

14: 𝑞 ← 𝑞′

15: end if
16: append 𝑑 (𝒙) to 𝒅
17: end for
18: 𝑢 ← −𝛽/

(
𝜃 ln(𝜃)2

)
·mean(𝒅)

19: append 𝑢 to 𝒖
20: end for
21: return mean(𝒖), var(𝒖)/𝑀

the true failure log-probability with variance given by the above
expression [14]. This yields a concentration bound

𝑃

(���ln 𝜇 − l̂n 𝜇��� ≥ 𝛿

)
≈ 2

©«1 − Φ
©«

𝛿√︃
𝜍2

ª®®¬
ª®®¬ ,

equivalently expressed as the confidence interval

𝑃

(���ln 𝜇 − l̂n 𝜇��� ≥ √︃
𝜍2 Φ−1

(
1 − 𝜖

2

))
≈ 𝜖 .

In experiments, we find that the sample variance decreases con-
sistently with number of samples, while the estimator exhibits a
small positive bias that appears to be proportional to the square
root of the sample variance; this is consistent with the definition of
an unbiased estimator, since the bias still converges to zero in the

high-sample limit. More precisely, we note that the z-score formed
by the estimator and its sample variance appears to converge in
distribution to

𝑧 =
l̂n 𝜇 − ln 𝜇√︃

𝜍2
∼ N(ln 2, 1) ,

although this effect has only be measured empirically and warrants
further study. If confirmed analytically, it could be used to boost
the accuracy of the confidence interval.

Because the sample variance is itself a quantity over log-probability
space, it is much more accurate than in the linear setting of Monte
Carlo estimation, where 𝜇 ± �̂� represents an uneven and often
meaningless spread over probabilities that spans multiple orders
of magnitude and can easily lie outside of the interval [0, 1]. With
the RL-MCMC method, the error bars effectively scale down for
ultra-low probabilities, making them useful for rare event analysis.

7 EXPERIMENTAL RESULTS AND DISCUSSION
7.1 One-dimensional example (estimation)
We first demonstrate RL-MCMC with a very simple toy problem
that admits an analytical solution. This allows us to evaluate the ac-
curacy, efficiency, and consistency of the joint learning-estimation
scheme.

In this problem, we imagine a UAV attempting to fly with con-
stant velocity 𝑣 , remaining above a given altitude until it reaches
a goal located at a horizontal distance 𝑑 away. The environment
produces a stochastic change in altitude at each time step, accord-
ing to 𝑋𝑡 ∼ N(0, 𝜎2). Failure occurs if the altitude drops further
than a certain value ℎ. The control system is assumed to be in a
failure state and is unable to effectively stabilize the altitude. The
probability of system failure is thus simply the probability that an
unimpeded random walk exceeds a certain threshold, which can be
calculated directly as

𝑝fail = 1 − Φ
(

ℎ

𝜎
√︁
⌈𝑑/𝑣⌉

)
,

where Φ is the cumulative distribution function of the normal distri-
bution. For the chosen parameters (listed in the caption of Figure 2),
the failure probability is approximately 9.852× 10−12. Although the
general path to failure could not be more obvious, the Monte Carlo

approach is hopeless. On average, it would require over 1011 trials
to reveal the existence of the failure mode, and orders of magnitude
more in order to begin characterizing it; the effect is seen in Figure
2.

Figure 2: Random trajectories sampled from the system. Pa-
rameters are Δ𝑡 = 1 second, ℎ = 15meter, 𝜎 = 1meter, 𝑣 = 10
meters per second, and 𝑑 = 50meters. While the accumula-
tion of perturbations is evident, the Monte Carlo approach
is not sufficient to reach failure; a high degree of time corre-
lation is required.

The RL-MCMC approach looks very different. We first learn the
mode of the failure distribution, here choosing the seed-action vari-
ant of AST as described in [9]. This variant treats both the system
and environment as near black boxes and requires Monte Carlo tree
search (MCTS) to find the likeliest paths to failure without access
to direct state or action information. Instead, the action space is
merely the space of random seeds used to set the system random
number generator at each time step. Note that the vast majority
of RL (and classical control) algorithms make active use of state
information, and would be able to solve this problem trivially due
to the direct relationship between actions and states. However, by
using this more generic framework, we hope to make the example
somewhat less trivial.

The reinforcement learning phase was run for 105 episodes. The
10 highest scoring paths through the tree are shown in Figure 3. By
construction, these trajectories are representative of the mode of
the conditional failure distribution but cannot be directly used to
estimate probability of failure, since they are detached from their
original probabilistic context.

Finally, the MCMC-based estimation is performed (Figure 4),
following Algorithm 2, with hyperparameters set to 𝛽 = 1/ℎ, 𝑛 =

103, and𝑚 = 104; this amounts to𝑚 ·𝑛 = 107 total trials. We obtain
simultaneous estimates of

l̂n 𝜇 ≈ −25.480√︃
𝜍2 ≈ 0.575 .

Figure 3: Highest scoring paths from the MCTS algorithm. In
reinforcement learning, the exploration policy is detached
from the generative process of the perturbation model and
can easily find the correlated perturbations that lead to the
region of failure. Since the AST framework optimizes for
likelihood under the constraint of eventual failure, these
trajectories represent the approximate mode of the desired
conditional distribution.

Given that the true value is log 𝑝fail ≈ −25.343, we can conclude
that the RL-MCMC estimate is very close to the true value, and is
capable of accurately estimating its own variance. In contrast to the
Monte Carlo approach, our approach requires only 1.01·107 samples
to produce a highly accurate estimate of the failure probability,
representing an improvement in efficiency by several orders of
magnitude.

We also characterize this estimation scheme over multiple runs.
Each execution produces an estimate of the log-probability and
the corresponding sample variance. As the number of samples in-
creases, the z-score should be distributed according to a unit normal
distribution. As described earlier, we observe a bias that is propor-
tional to the square root of the sample variance, which decreases
as the number of samples grows. Figure 5 shows a histogram of the
results over 1000 random seeds. The mean of the z-scores is 0.695,
close to the posited value of ln 2, while the standard deviation is
1.023, close to the ideal value of 1.

7.2 Two-dimensional example (sampling)
To highlight the ability of RL-MCMC to learn and sample complex
conditional distributions, we consider a system with an active SUT,
less trivial dynamics, and a more tightly constrained route to failure.
In this problem, we imagine a multirotor that must hover at the
center of a horizontal square [−𝑎, 𝑎] × [−𝑎, 𝑎] while pointing in a
fixed angle of 0◦ in the𝑥-𝑦 plane; the vertical dimension is irrelevant.
Two-dimensional Gaussian noise perturbs the position at each time
step, and failure occurs if the vehicle exceeds its horizontal bounds.

Because of the fixed-angle requirement, the vehicle cannot be
rotated in place to move in an arbitrary direction. An engineer

Figure 4: Random trajectories sampled directly from the
conditional distribution. Since the MCMC process has been
seeded at the mode of the distribution by the reinforcement
learning policy, the convergence phase is eliminated. These
samples can be used to characterize the distribution in greater
depth.

Figure 5: Distribution of z-scores for the estimated mean and
sample variance. The shaded curve represents the N(ln 2, 1)
distribution, which we posit to be the limiting case of the
statistic.

designs an ad-hoc controller to maintain the vehicle at the origin,
relying on the fact that the multirotor can be rolled along either
of the two non-vertical axes to produce horizontal movement. To
avoid a net change in pointing angle, only one axis can be rolled
at a time, and therefore these corrective positional maneuvers can
only occur along the unit vectors 𝑥 and 𝑦, although the sign and
magnitude of the impulse can vary.

The controller is implemented as follows: at each time step,
if the multirotor displacement (𝑥,𝑦) is sufficiently off-nominal,
proportional control with a gain 𝑘 is applied to the higher of the two
coordinates2. In this way, the position is continually regulated back
toward the origin. To avoid jitter around the origin, the engineer
specifies the nominal region as

| |𝑥 | − |𝑦 | | < 𝜖

for a small value of 𝜖 . This is an implementation bug: instead of
defining a simple 𝐿1 ball around the origin, the engineer’s sign error
has caused the nominal region to extend along [±1,±1] in a O(𝜖)
width strip. If the position falls in this region, no correction will
be applied, although the effect is subtle enough under the noise
disturbance that failures remain rare (Figure 6). Note that manual
coordinate-wise bounds testing would not necessarily reveal viable
paths to failure.

Figure 6: Random trajectories sampled from the system. Pa-
rameters are 𝑎 = 1, 𝜎 = 0.1, 𝜖 = 0.05, and𝑘 = 0.25. Inmost of the
domain, the SUT applies restricted proportional control to
quickly regulate the multirotor back to the origin. An imple-
mentation error creates corridors of the state space (shown
in green) where the controller does not function correctly.
Due to the stochasticity of the environment and the near-
correctness of the SUT, this latent failure mode is obscured
in naïve Monte Carlo testing.

The results are similar to the first example. Here, the failure
model is learned with the PPO algorithm [15]; unlike MCTS, PPO
makes direct use of simulation state information to learn a fail-
ure policy, which associates positions with optimal disturbances
along the modal path to failure (the SUT itself remains a black box).
PPO was chosen because of its common use as an RL baseline;
other standard baselines, such as soft actor-critic [3] and tabular Q-
learning [17] have been successfully used with the adaptive stress
testing framework [11]. The learning is performed for approxi-
mately 104 trials (105 steps), and the subsequent MCMC procedure
2Damping from aerodynamic drag obviates the need for a full PID controller.

Figure 7: Samples from the PPO failure policy, with random
initializations close to the origin. Deep reinforcement learn-
ing is able to quickly identify and pursue the likeliest paths to
failure, although the algorithm has no knowledge of the un-
derlying SUT implementation. As before, these trajectories
are approximately modal; further training would improve
the policy but the slight inexactness is not major problem
for the subsequent MCMC phase.

Figure 8: Random trajectories sampled directly from the con-
ditional distribution. Some imperfections and asymmetries
from the PPO policy are still visible at this stage in the sam-
pling but are gradually smoothed out as the MCMC process
continuously optimizes its distribution.

is run for 107 total trials, yielding a large set of failure trajectories
sampled directly from the conditional distribution. These phases
are shown in Figures 7 and 8, respectively. As in the first example,
an equivalently-sized Monte Carlo experiment yields zero failures.

Figure 7 demonstrates why this approach is fairly tolerant of
model error. If the statistical parameters of environment are altered
(for instance, the perturbation magnitude), a prior Monte Carlo
analysis is invalidated and subsequent results may be dramatically
different. The reinforcement learning phase is somewhat invariant
to this effect; once a model has been learned, the MCMC sampling
can be rerun with slightly different statistical parameters. Even if
the RL policy no longer represents the exact mode of the conditional
distribution, the MCMC process can compensate through burn-in,
optimizing its chain of samples toward the correct mode as the
sampling progresses.

8 FUTUREWORK
There are several aspects of this work that are ongoing. We would
like to explore the impact on the algorithm of critical hyperparam-
eters such as 𝛽 . Additionally, it will be important to better char-
acterize the convergence properties of the path sampling method,
which includes a formal analysis of the estimator bias and the de-
velopment of a second-order correction factor, if possible. Finally,
recent years have seen an explosion in the success of diffusion- and
transformer-based policies for difficult sequential decision-making
tasks. Applying these methods to the adaptive stress testing prob-
lem could further improve the ability of this method to discover
and analyze errors in real-world systems. Diffusion methods may
also provide a complementary approach to the statistical estimation
phase, since they rely on constructing a series of gradual transfor-
mations to bridge highly dissimilar distributions.

9 CONCLUSION
We have addressed an important limitation in current and state-of-
the-art approaches to statistical validation of autonomous systems.
Subtle implementation errors, software bugs, and machine learning
model deficiencies tend to exhibit low-incidence, high-correlated
failures that are not caught by Monte Carlo testing. As a result,
the development and V&V process of autonomous systems can be
notoriously long-tailed. We have presented an approach that com-
bines reinforcement learning and MCMC sampling to efficiently
discover and analyze these sorts of failures. The MCMC method
allows rapid generation of failures provided a valid initialization
within the failure mode, while a modified path sampling procedure
uses those samples to accurately estimate the associated probability,
along with a valid confidence interval. We show that reinforcement
learning provides the key to enable this approach at scale by find-
ing the optimal initialization through non-statistical methods; it
benefits from the ability of modern ML to solve nontrivial and
high-dimensional problems. Critically, the estimates are formed
directly in logarithmic space, which is well suited to representing
probability, and we demonstrate that the statistics are reasonably
well-behaved over irregular underlying distributions. This devel-
opment improves the efficacy of automated stress testing and is a
step toward generation of artifacts for system certification.

ACKNOWLEDGMENTS
This work is supported by the Systems-Wide Safety (SWS) Project
under the NASAAeronautics ResearchMission Directorate (ARMD)
Airspace Operations and Safety Program (AOSP).

REFERENCES
[1] Anthony Corso, Peter Du, Katherine Driggs-Campbell, andMykel J. Kochenderfer.

2019. Adaptive Stress Testing with Reward Augmentation for Autonomous
Vehicle Validation. In IEEE International Conference on Intelligent Transportation
Systems (ITSC). https://doi.org/10.1109/ITSC.2019.8917242

[2] Andrew Gelman and Xiao-Li Meng. 1998. Simulating normalizing constants:
From importance sampling to bridge sampling to path sampling. Statistical science
(1998), 163–185.

[3] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning with a
stochastic actor. In International conference on machine learning. PMLR, 1861–
1870.

[4] Kyle D. Julian, Ritchie Lee, and Mykel J. Kochenderfer. 2020. Validation of Image-
Based Neural Network Controllers Through Adaptive Stress Testing. In IEEE
International Conference on Intelligent Transportation Systems (ITSC).

[5] Mark Koren, Saud Alsaif, Ritchie Lee, and Mykel J. Kochenderfer. 2018. Adaptive
Stress Testing for Autonomous Vehicles. In IEEE Intelligent Vehicles Symposium
(IV). IEEE.

[6] M. Kwiatkowska, G. Norman, and D. Parker. 2011. PRISM 4.0: Verification of Prob-
abilistic Real-time Systems. In Proc. 23rd International Conference on Computer
Aided Verification (CAV’11) (LNCS, Vol. 6806), G. Gopalakrishnan and S. Qadeer
(Eds.). Springer, 585–591.

[7] Leslie Lamport. 2003. Specifying Systems: The TLA+ Language and Tools for
Hardware and Software Engineers. Addison-Wesley.

[8] Ritchie Lee, Ole J. Mengshoel, Adrian K. Agogino, Dimitra Giannakopoulou, and
Mykel J. Kochenderfer. 2019. Adaptive Stress Testing of Trajectory Planning
Systems. In AIAA SciTech, Intelligent Systems Conference (IS). AIAA.

[9] Ritchie Lee, Ole J. Mengshoel, Anshu Saksena, Ryan Gardner, Daniel Genin,
Joshua Silbermann, Michael Owen, and Mykel J. Kochenderfer. 2020. Adap-
tive Stress Testing: Finding Likely Failure Events with Reinforcement Learning.
Journal of Artificial Intelligence Research 69 (2020), 1165–1201.

[10] Rory Lipkis and Adrian Agogino. 2023. Discovery and Analysis of Rare High-
Impact Failure Modes Using Adversarial RL-Informed Sampling. In International
Conference on Autonomous Agents and Multiagent Systems. Springer, 123–140.

[11] Rory Lipkis, Ritchie Lee, Joshua Silbermann, and Tyler Young. 2022. Adaptive
Stress Testing of Collision Avoidance Systems for Small UASs with Deep Rein-
forcement Learning. In AIAA SciTech 2022 Forum. 1854.

[12] Robert J Moss, Mykel J Kochenderfer, Maxime Gariel, and Arthur Dubois. 2023.
Bayesian Safety Validation for Black-Box Systems. In AIAA Aviation 2023 Forum.
3596.

[13] Robert J. Moss, Ritchie Lee, and Mykel J. Kochenderfer. 2020. Adaptive Stress
Testing of Trajectory Predictions in Flight Management Systems. In IEEE/AIAA
Digital Avionics Systems Conference (DASC). AIAA/IEEE.

[14] Art B. Owen. 2013. Monte Carlo Theory, Methods, and Examples. Preprint.
[15] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

2017. Proximal Policy Optimization Algorithms. arXiv:1707.06347 (2017).
[16] Larry Wasserman. 2013. All of Statistics: A Concise Course in Statistical Inference.

Springer.
[17] Christopher J. C. H. Watkins and Peter Dayan. 1992. Technical Note: Q-Learning.

Machine Learning 8 (1992), 279–292.

https://doi.org/10.1109/ITSC.2019.8917242

	Abstract
	1 Introduction
	2 Background
	3 Sampling framework
	4 MCMC sampling
	5 Adaptive stress testing
	6 Probability estimation
	7 Experimental results and discussion
	7.1 One-dimensional example (estimation)
	7.2 Two-dimensional example (sampling)

	8 Future work
	9 Conclusion
	Acknowledgments
	References

