
Causal Discovery via Adaptive Agents in Multi-Agent and
Sequential Decision Tasks

Matteo Ceriscioli

Oregon State University

Corvallis (OR), USA

ceriscim@oregonstate.edu

Karthika Mohan

Oregon State University

Corvallis (OR), USA

karthika.mohan@oregonstate.edu

ABSTRACT
Understanding the connection between robustness to distribution

shifts and learning the causal model of an environment is an im-

portant area of study in AI. While previous work has established

this link for single agents in unmediated decision tasks, many real-

world scenarios involve mediated settings where agents influence

their environment. We demonstrate that agents capable of adapting

to distribution shifts can recover the underlying causal structure

even in these more dynamic settings. Our contributions include an

algorithm for learning Causal Influence Diagrams (CIDs) using op-

timal policy oracles, with the flexibility to incorporate prior causal

knowledge. We illustrate the algorithm’s application in a mediated

single-agent decision task and in multi-agent settings. We show

that the presence of a single robust agent is sufficient to recover

the complete causal model and derive optimal policies for all the

other agents operating in the same environment. We also demon-

strate how to apply these results to sequential decision-making

tasks modeled as Partially Observable Markov Decision Processes

(POMDPs).

KEYWORDS
Causal Discovery, POMDP, Multi-agent systems

1 INTRODUCTION
Understanding causal relationships is fundamental to developing

AI systems that can robustly adapt to changing environments [13].

While traditional machine learning approaches excel at pattern

recognition within fixed distributions, they often struggle when

faced with distribution shifts or interventions that alter the under-

lying system dynamics. This problem has been extensively studied

through diverse methodologies including domain adaptation [4],

transfer learning [12, 22], federated learning [11], and transportabil-

ity [14], each addressing distinct flavors of the problem. Modern AI

systems are expected to meet several key requirements, including

robustness to distribution shifts, reliable generalization, transparent

decision-making processes, and avoidance of unintended conse-

quences [1, 8]. Causal models offer a powerful framework that

addresses these challenges by providing a formal representation

of the mechanisms governing an environment [13]. This approach

enables agents to generalize more effectively by understanding the

underlying causal relationships that persist across different scenar-

ios [17], and it enhances system explainability by supporting both

interventional and counterfactual reasoning [3].

Proc. of the Adaptive and Learning Agents Workshop (ALA 2025), Avalos, Aydeniz,
Müller, Mohammedalamen (eds.), May 19 – 20, 2025, Detroit, Michigan, USA, ala-
workshop.github.io. 2025.

Recent work [16] has demonstrated that agents capable of adapt-

ing to distribution shifts must implicitly learn their environment’s

causal structure. However, these results focus on single-agent, non-

sequential tasks, and rely on the strong assumption of no medi-

ation [13], meaning the agent’s actions cannot have an effect on

the utility via environment states. In contrast, many real-world AI

applications involve tasks where mediation exists. For example, an

autonomous car navigating from point A to point B, may affect

lane occupancy and, in turn, traffic flow and the behavior of other

drivers. Similarly, a robot in an industrial plant might interact with

tools, move through space, and transform products to complete its

task.

This work makes the following key contributions:

(1) We extend the theoretical understanding of causal discovery

through robust agents by demonstrating that the assumption

of unmediated tasks is unnecessary
1
.

(2) We present an algorithm to learn the Causal Influence Dia-

gram (CID) describing mediated decision tasks, by querying

optimal policy oracles. We outline how to incorporate prior

knowledge into the causal model (Section 3.1).

(3) We offer insights into the implications of our findings for

multi-agent environments (Section 3.3).

(4) We explain how this algorithm can be applied to sequential

decision tasks modeled with Partially Observable Markov

Decision Processes (POMDPs) (Section 3.4).

2 PROBLEM SETUP
Our goal is to recover the causal structure and the Conditional Prob-

ability Tables (CPTs) of the variables describing the environment

in which the agents operate. This environment consists of both

observable variables and hidden latent variables. We define a set of

interventions modeling distribution shifts, and to learn the causal

graph, we query an optimal policy oracle associated with one agent

to get the optimal policy for that agent under the specified distribu-

tion shift. Observe that this setup is unsuitable for traditional causal

discovery algorithms like PC [20] and FCI [19] because we do not

have access to the joint probability distribution of the variables or

any sample data.

Tomodel the causal relationships in the environment, we use Causal

Influence Diagrams (CIDs) [5, 7]. Similar to Influence Diagrams [9],

CIDs are commonly used to reason about decision-making tasks.

CIDs further assume that the graph encodes the causal relationships

between the nodes. We denote the set of parents of a node 𝑋 as

1
The full proof with details can be found in the supplementary material.



𝑃𝑎𝑋 , the set of children as 𝐶ℎ𝑋 , the set of ancestors as 𝐴𝑛𝑐𝑋 , the

set of descendants as 𝐷𝑒𝑠𝑐𝑋 and instantiations of random variables

in lower-case.

Definition 1 (Causal influence diagram [5, 7]). A causal influence
diagram (CID) is a Causal Bayesian Network𝑀 = (𝐺 = {𝑉 , 𝐸}, 𝑃),
where 𝑃 is a joint probability distribution compatible with the con-

ditional independences encoded in 𝐺 . The variables in 𝑉 are par-

titioned into decision, utility, and chance variables, 𝑉 = (𝐷,𝑈 ,𝐶).
Each utility node 𝑈𝑖 is associated with a real function 𝑓𝑖 of its

parents 𝑓𝑖 : Im(𝑃𝑎𝑈𝑖
) → R.

𝑀 𝑅

𝑊 𝑈𝐷

Figure 1: A CID that represents a mediated decision task
where the set of utility nodes is U = {𝑈 }, the set of chance
nodes is C = {𝑀,𝑅,𝑊 }, and the set of decision nodes is D =

{𝐷}. In this example, we have a sprinkler controlled by an AI
agent.𝑀 represents the month of the year, 𝑅 corresponds to
rain, and𝑊 is 1 if the grass is wet and 0 otherwise. The utility
node 𝑈 is associated with a utility function that rewards the
agent if the grass is wet but penalizes sprinkler usage. To
compute the utility we only need to know the decision 𝐷 and
the state of𝑊 , this is why 𝑃𝑎𝑈 = {𝐷,𝑊 }.

Each agent may correspond to a different set of decision nodes

and have access to a distinct subset of observable variables. A vari-

able observed by one agent may be latent for another. Additionally,

considering a situation where an agent takes more than one deci-

sion, the set of variables that it observes when it takes one decision

can differ from the one that it observes when taking another deci-

sion. A decision task is said to be mediated if 𝐷𝑒𝑠𝑐𝐷 ∩𝐴𝑛𝑐𝑈 ≠ ∅,
that is, if a decision influences some part of the environment that

is relevant to the task. An example of CID representing a medi-

ated decision task can be found in Figure 1. In this example, an AI

agent controls a sprinkler (𝐷) with the goal of keeping the grass

wet (𝑊 = 1). The agent is aware of the current month (𝑀 → 𝐷),
which influences the probability of rain (𝑀 → 𝑅), and rain in turn

affects whether the grass becomes wet (𝑅 →𝑊 ). There is a utility
function associated with the utility node𝑈 , which depends on both

the grass’s wetness (𝑊 → 𝑈 ) and the sprinkler’s usage (𝐷 → 𝑈 ).
The utility function rewards the agent for achieving𝑊 = 1 while

discouraging sprinkler activations to avoid wasting water when

the grass is already wet because of the rain.

An important concept in this setting is domain dependence [16].

Intuitively, domain dependence means that for the tasks and envi-

ronments we consider, no single policy 𝜋 can be optimal across all

possible distribution shifts.

Definition 2 (Domain dependence [16]). There exists 𝑃 (𝐶 = 𝑐) and
𝑃 ′ (𝐶 = 𝑐) compatible with𝑀 such that 𝜋∗ = argmax𝜋 E𝜋

𝑃
[𝑈 ] =⇒

𝜋∗ ≠ argmax𝜋 E𝜋
𝑃 ′ [𝑈 ].

Domain dependence is significant because when it holds it ex-

cludes trivial cases where the optimal policy remains unchanged

under any distribution shift. In such scenarios, any optimal agent

operating under a certain distribution remains optimal under any

shift, so optimality automatically implies robustness. In these cases,

the agent does not need to learn a causal model of the environment

to be robust against distribution shifts.

Following the work of [16], we represent distribution shifts as

mixtures of local interventions. Given a random variable 𝑋 with

𝑥1, . . . , 𝑥𝑛 as possible observable values, a local intervention on

𝑋 is a function 𝜎 : 𝑥𝑖 ↦→ 𝑓 (𝑥𝑖 ) that maps each observable value

𝑥𝑖 to a new observable value 𝑓 (𝑥𝑖 ). In other words, local inter-

ventions deterministically reassign a random variable’s outcomes

independently of other variables.

Definition 3 (Local intervention [16]). Local intervention 𝜎 on 𝑋

involves applying a map to the states of 𝑋 that is not conditional

on any other endogenous variables, 𝑥 ↦→ 𝑓 (𝑥). We use the notation

𝜎 = 𝑑𝑜 (𝑋 = 𝑓 (𝑥)) (variable 𝑋 is assigned the state 𝑓 (𝑥)). Formally,

this is a soft intervention on 𝑋 that transforms the conditional

probability distribution as:

𝑃 (𝑥 | pa𝑋 ;𝜎) :=
∑︁

𝑥 ′ :𝑓 (𝑥 ′ )=𝑥
𝑃 (𝑥 ′ | pa𝑋 ) (1)

In general, a local intervention has limited capacity to model

distribution shifts. For instance, it cannotmodel the shift from a coin

that always lands on heads to a fair coin because a local intervention

must deterministically map the observable value ’head’ to another

observable value. Therefore, we now report the concept of a mixture

of local interventions [16]. This mixture is a convex combination

𝜎∗ =
∑
𝑖 𝑝𝑖𝜎𝑖 of local interventions 𝜎𝑖 , where each coefficient 𝑝𝑖

represents the probability that 𝜎𝑖 is used to map the observable

value for 𝑋 .

Definition 4 (Mixture of interventions [16]). A mixture of inter-
ventions 𝜎∗ =

∑
𝑖 𝑝𝑖𝜎𝑖 for

∑
𝑖 𝑝𝑖 = 1 performs intervention 𝜎𝑖 with

probability 𝑝𝑖 . Formally, 𝑃 (𝑥 | 𝑝𝑎𝑥 ;𝜎∗) =
∑
𝑖 𝑝𝑖𝑃 (𝑥 | 𝑝𝑎𝑥 ;𝜎𝑖 ).

As an example of how a mixture of local interventions can repre-

sent a distribution shift, consider the following: we have a random

variable 𝑋 representing the outcome of a biased coin flip that al-

ways lands on heads, where 𝑋 ∈ {𝐻,𝑇 } corresponds to heads and

tails, respectively. Let 𝜎𝑖 := 𝑑𝑜 (𝑋 = 𝑖) with 𝑖 ∈ {𝐻,𝑇 }, then define

𝜎∗ =
∑
𝑖 𝑝𝑖𝜎𝑖 . By changing the coefficients 𝑝𝑖 , we can map the distri-

bution of the fair coin to any distribution on the observable values

set Im(𝑋 ) = {𝐻,𝑇 }. For example, by setting 𝑝𝐻 = 2

3
and 𝑝𝑇 = 1

3
,

we can map the original distribution to a new one where heads is

observed
2

3
of the time and tails is observed

1

3
of the time. Note

that in this example, each local intervention was a hard interven-

tion because, regardless of the value of the coin, each intervention

mapped it to a specific value. In general, this is not required, as

a local intervention can be any deterministic map from the set of

observable values to itself.



Figure 2: Histograms illustrating the distribution shift in-
duced by a mixture of local interventions. The left histogram
shows a biased coin distribution 𝑃 (𝑋 ), where the coin always
lands on heads. The right histogram represents a shifted
distribution 𝑃 (𝑋 | 𝜎∗) obtained by applying the mixture
𝜎∗ = 𝑝𝐻𝜎𝐻 + 𝑝𝑇𝜎𝑇 for 𝜎𝑖 := 𝑑𝑜 (𝑋 = 𝑖) with 𝑝𝐻 = 2

3
and 𝑝𝑇 = 1

3
.

Observe that there are local interventions that, unlike hard in-

terventions, do not make a variable independent of its parents. For

example, consider an unbiased coin flip 𝑌 and a die throw 𝑋 . If the

coin lands on heads, we throw a six-sided die, if it lands on tails,

we throw a twelve-sided die. In this scenario, 𝑌 and 𝑋 are clearly

dependent and in the corresponding causal graph 𝑌 ∈ 𝑃𝑎𝑋 . Now
consider the local intervention 𝜎𝑚 := 𝑑𝑜 (𝑋 = 𝑋 mod 12 + 1). This
intervention increases the die result by one or sets it to 1 if the

result was 12. This local intervention does not make 𝑋 independent

of 𝑌 because, for instance:

𝑃 (𝑋 = 4|𝑌 = 𝑇 ;𝜎𝑚) = 𝑃 (𝑋 = 3|𝑌 = 𝑇 ) = 1

12

(2)

However,

1

12

≠
1

8

= 𝑃 (𝑋 = 3) = 𝑃 (𝑋 = 4|𝜎𝑚) (3)

We use optimal policy oracles to formalize the agent’s under-

standing of optimal behavior under distribution shifts. Let 𝐷 be a

decision variable with observable values 𝑑 ∈ Im(𝐷), given a set of

interventions Σ, an optimal policy oracle is a map Π∗Σ : 𝜎 ↦→ 𝜋𝜎 (𝑑 |
𝑝𝑎𝐷 ) for 𝜎 ∈ Σ, where 𝜋𝜎 (𝑑 | 𝑝𝑎𝐷 ) is the optimal policy under the

distribution shift induced by the intervention 𝜎 .

Definition 5 (Policy oracle). A policy oracle for a set of interven-

tions Σ is a mapΠ∗Σ : 𝜎 ↦→ 𝜋𝜎 (𝑑 | 𝑝𝑎𝐷 ) ∀𝜎 ∈ Σ, where 𝜋𝜎 (𝑑 | 𝑝𝑎𝐷 )
is an optimal policy under the intervention 𝜎 .

In our work, we rely on Algorithm 1 from [16], which takes as

input a utility function𝑈 , an optimal policy oracle, an intervention

𝜎 ∈ Σ, and a parameter 𝑁 that controls the number of samples. For

any local intervention 𝜎 ∈ 𝜎𝑌 , let 𝑑 be the deterministic optimal

decision under the shift induced by 𝜎 . By domain dependence, there

exists a hard intervention 𝜎′ such that 𝑑 is no longer optimal. Let

𝑑2 be the deterministic optimal decision under 𝜎′. Considering the

mixture 𝜎 (𝑞) := 𝑞𝜎 + (1 − 𝑞)𝜎′, there exist a value 𝑞𝑐𝑟𝑖𝑡 for 𝑞 such
that 𝑑2 and another decision 𝑑1 are both optimal. The algorithm

returns 𝑞𝑐𝑟𝑖𝑡 , 𝑑1, and 𝑑2.

3 MAIN RESULTS
In this section, we describe an algorithm for learning the CID using

an optimal policy oracle. In Section 3.2, we show this algorithm

can be applied to learn a simple environment with a single agent.

Subsequently, in Section 3.3, we demonstrate how to adapt this

approach to handlemulti-agent environments. Finally, in Section 3.4

we discuss the relation between CIDs and POMDPs and explain

how to apply our causal discovery algorithm to learn a causal model

for POMDPs.

3.1 LearnCID Algorithm
Under specific assumptions detailed below, the LearnCID algo-

rithm enables the reconstruction of the underlying causal model

by identifying the CID structure and the CPTs for the variables

corresponding to chance nodes. The correctness proof for Algo-

rithm 1 (LearnCID) can be found in the supplementary material.

The LearnCID algorithm operates under the following assumptions:

Assumption 1. Given the CID 𝑀 = (𝐺 = {𝑉 , 𝐸}, 𝑃) with 𝑉 =

(𝐷,𝑈 ,𝐶), the set of nodes and the partition (𝐷,𝑈 ,𝐶) is known.
The set of nodes together with the node partition (𝐷,𝑈 ,𝐶) is

known, therefore we know all variables in the system and the type

of each node (decision, utility, or chance).

Assumption 2. The CID is faithful [21] and sufficient [13].

Faithfulness implies that every conditional independence en-

coded in the graph𝐺 also holds in the joint probability 𝑃 . A set of

variables in a causal model is sufficient when it includes all common

causes.

Assumption 3. The CID contains exactly one decision node 𝐷

and one utility node𝑈 .

Despite Assumption 3, this algorithm can be applied to multi-

decision CIDs. In Section 3.3 we explain how a CID containing

multiple decision nodes can be converted to a single-decision CID

to recover the full causal structure and derive optimal policies for

all the decision nodes. For CIDs with multiple utility nodes, we can

select one utility node and prune the others. Note that the optimal

policy oracle depends on both the specific CID and decision node,

so different utility node selections generally correspond to different

optimal policy oracles. After selecting a utility node, we can also

prune all chance nodes that are not ancestors of𝑈 .

Assumption 4. The Markov blanket of decision node 𝐷 is known.

We also know all the edges between these nodes. The CPTs of

chance nodes that are children of 𝐷 are known.

Motivations for Assumption 4 can be found in the supplementary

material.

Assumption 5. 𝐷 is a parent of𝑈 .

Assumption 6. All chance nodes are ancestors of𝑈 .

Chance nodes that are not ancestors of 𝑈 (and consequently,

since 𝐷 ∈ 𝑃𝑎𝑈 , not ancestors of 𝐷) have no influence on the deci-

sion task. LearnCID would ignore these nodes, and their associated

causal structure and CPTs would not be recovered.

Assumption 7. The utility function 𝑓 associated with the utility

node𝑈 is fully specified.

The utility function’s functional form is known, which tells us

all the variables involved in calculating the utility. These variables

appear in the causal graph as parents of the utility node.



Algorithm 1 LearnCID

Input:
• Nodes 𝑉 = {{𝐷}, {𝑈 },𝐶}
• Known set of edges 𝐸

• Set of chance nodes with all known parents 𝑉
kwn

• Number of samples 𝑁 to estimate 𝑞crit

Output: The CID’s structure 𝐸′, and the set of CPTs 𝑃 for all nodes in 𝐶 \𝐶ℎ𝐷
1: while there are still unvisited chance nodes, starting from the parents of𝑈 that are not children of 𝐷 do
2: 𝑋 ← Unvisited chance node with a known path to𝑈

3: Path← Set of chance nodes on a directed internal path from 𝑋 to𝑈 , or to 𝐷 if𝑈 is unreachable

4: 𝐶𝑋 ← Chance nodes not in Path, and not known to be parents of 𝑋

5: 𝑍 ← 𝑃𝑎𝑋 if 𝑋 ∈ 𝑉
kwn

else 𝑍 ← 𝐶𝑋
6: for each instantiation 𝑥 of 𝑋 do
7: for each 𝑌 ∈ 𝑍 and each instantiation of variables 𝑐 in 𝐶𝑋 \ 𝑌 do
8: 𝜎𝑌 (𝑐) ← As in Equation 5

9: for each 𝜎 ∈ 𝜎𝑌 do
10: Estimate 𝑞crit, 𝑑1, 𝑑2, 𝑝𝑎

′
𝑈
using ALG𝑞crit (𝑈 ,Π∗Σ, 𝑁 , 𝜎)

11: Compute 𝑃 (𝑋 = 𝑥 | 𝑝𝑎𝑥 ;𝜎) using Equations 6 and 7

12: if there exist two interventions 𝜎, 𝜎′ in 𝜎𝑌 such that 𝑃 (𝑥 | 𝑝𝑎𝑋 ;𝜎) ≠ 𝑃 (𝑥 | 𝑝𝑎𝑋 ;𝜎′) then
13: 𝑌 is a parent of 𝑋

14: for each 𝑝𝑎𝑋 ∈ Im(𝑃𝑎𝑋 ) do
15: 𝑃 (𝑥 | 𝑝𝑎𝑋 ) ← 𝑃 (𝑥, 𝑝𝑎𝑋 ;𝜎) for any hard intervention 𝜎 compatible with 𝑝𝑎𝑋

16: Return the updated set of edges 𝐸′, and the set of CPTs 𝑃

Assumption 8. We have access to a set Σ of all possible mixtures

of local interventions, along with the optimal policy oracle Π∗Σ for

decision node 𝐷 .

Assumption 9. There exist no decision 𝑑∗ ∈ Im(𝐷) that is optimal

for any instantiation of 𝑃𝑎𝑈 \ 𝐷 .

If Assumption 7 holds, we can verify Assumption 9 by testing

different value combinations for the parent nodes of𝑈 . While As-

sumption 9 is equivalent to domain dependence (Definition 2) in

unmediated decision tasks, this equivalence breaks down in the

general mediated case. Nevertheless, Assumption 9 is sufficient to

guarantee domain dependence.

Prior knowledge in the form of the causes of a subset of chance

nodes can be provided. In particular, prior knowledge about direct

causes (parents) can be specified for a subset of chance nodes, de-

noted as 𝑉
kwn

i.e., for every 𝐶𝑖 ∈ 𝑉kwn, the set of parent nodes of
𝐶𝑖 is known.

To properly formulate the algorithm, we need to introduce some

concepts. We define a local intervention:

𝑓 (𝑋 ) ←
{
𝑥, if 𝑋 = 𝑥

𝑥 ′, otherwise

(4)

where 𝑥 ′ is an arbitrary observable value for𝑋 different from 𝑥 . Let

𝐶𝑋 represents the set of all chance nodes except 𝑋 and those along

a directed path from 𝑋 to either 𝑈 or 𝐷 , we define the following

family of local interventions:

𝜎𝑌 (𝑐) ← {𝑑𝑜 (𝑌 = 𝑦,𝐶𝑋 = 𝑐, 𝑋 = 𝑓 (𝑋 )) | 𝑦 ∈ Im(𝑌 )} (5)

Let 𝐶1, . . . ,𝐶𝑘 be the chance nodes in a directed internal path from

𝑋 to 𝑈 or 𝐷 . If 𝐶1 ∈ 𝑃𝑎𝑈 let C := {𝐶1, . . . ,𝐶𝑘 } otherwise let

C := {𝐶2, . . . ,𝐶𝑘 }. For both 𝑥 and 𝑥 ′, we compute:

𝛽 (𝑥) :=
∑︁

𝑐∈Im(C)

𝑘∏
𝑖=1

𝑃 (𝑐𝑖 | 𝑝𝑎𝐶𝑖
) [𝑈 (𝑑2, 𝑐) −𝑈 (𝑑1, 𝑐)] (6)

Observe that the right-hand side of Equation 6 depends on 𝑋 for

determining the set containing the path of chance nodes C, and
depends on the specific instantiation 𝑥 of 𝑋 because 𝑋 is the parent

of either a chance node in C, the decision node 𝐷 , or the utility

node𝑈 . Using Equation 6, we can compute 𝑃 (𝑥 | 𝑝𝑎𝑋 ;𝜎) as:

𝑃 (𝑥 | 𝑝𝑎𝑋 ;𝜎) =
(1 − 1

𝑞𝑐𝑟𝑖𝑡
) [𝑈 (𝑑2, 𝑝𝑎′𝑈 ) −𝑈 (𝑑1, 𝑝𝑎

′
𝑈
)] − 𝛽 (𝑥 ′)

𝛽 (𝑥) − 𝛽 (𝑥 ′)
(7)

3.2 Example 1 - Single agent environment
Consider the CID in Figure 3, assume we know 𝐵 ∈ 𝐶ℎ𝐷 , 𝐴 ∈
𝑃𝑎𝑈 , and all the variables are binary. We also know 𝑈 (𝑑, 𝑎) := 1

if 𝑑 = 𝑎 and 0 otherwise, and an optimal policy oracle Π∗Σ where

Σ is the set of all mixtures of local interventions. The CPT for 𝐴

can be found in the table on the right side of Figure 3, but let us

assume it is unknown.We want to use Algorithm 1 to learn whether

there is an edge between 𝐵 and 𝐴, and the CPT for 𝐴. For ease of

comprehension we summarize the application of Algorithm 1 to

the example CID in Figure 3, in the following steps:

(1) Insert unvisited chance nodes (i.e., chance nodes for which

we do not know the parents or the CPT of the corresponding



𝐵 𝐴

𝐷 𝑈

𝐵 𝐴 𝑃 (𝐴|𝐵)
0 0 0.7

0 1 0.3

1 0 0.1

1 1 0.9

Figure 3: An example of a single-decision/single-utility CID.
On the right, the CPT for variable 𝐴. The edge marked in red
is unknown.

variable) with a known path to𝑈 into a queue, starting from

the parents of𝑈 that are not children of 𝐷 .

(2) Extract 𝐴 from the queue and define local interventions on

𝐵 as in Equation 5, used to obtain both the CPT for 𝐴 and

the set of its parents.

(3) Estimate 𝑞𝑐𝑟𝑖𝑡 using ALG𝑞𝑐𝑟𝑖𝑡 (Algorithm 1 in Richens and

Everitt [16]).

(4) Compute 𝑃 (𝐴 = 𝑎𝑖 |𝑑𝑜 (𝐵 = 𝑏𝑖 )).
(5) Repeat steps 2 to 4 for all configurations of 𝑎𝑖 and 𝑏𝑖 .

(6) Deduce the set of parents of 𝐴 and its CPT.

Following the aforementioned steps:

Step 1: In this example 𝑃𝑎𝐷 is empty and 𝑃𝑎𝑈 = {𝐴}, so we start

from node 𝐴. We also assume 𝑉𝑘𝑛𝑤 is empty. Observe that since 𝐴

is the only chance node that is not children of 𝐷 the process will

stop after 𝐴. Since 𝐴 ∈ 𝑃𝑎𝑈 , "Path" is empty and 𝐶𝐴 = {𝐵}.

Step 2: Set 𝜎0 := 𝑑𝑜 (𝐵 = 0), then in ALG𝑞𝑐𝑟𝑖𝑡 we use the ora-

cle Π∗Σ (𝜎0) to find the optimal decision 𝑑1 := 0. This is evident from

the (unknown) CPT because for 𝐵 = 0 the probability that 𝐴 = 0 is

higher than the one for𝐴 = 1, since the utility is an AND operation

between 𝐴 and 𝐷 , the oracle returns the optimal decision 𝐷 = 0

which will be equal to 𝐴 more often than 𝐷 = 0.

Step 3: We estimate 𝑞𝑐𝑟𝑖𝑡 using ALG𝑞𝑐𝑟𝑖𝑡 . It works by finding

𝜎′ such that the optimal decision is no longer 𝐷 = 0. Since in this

example 𝐷 is binary, we already know the new optimal decision

must be 𝐷 = 1, in general, for this we can use the optimal policy

oracle. We can find 𝜎′ by hard intervening on the parents of the

utility node 𝑈 , which is 𝐴 in this case, such that 𝑑1 is no longer

optimal. Specifically, we can define 𝜎′ as a hard intervention that

sets 𝐴 to 1, therefore the new optimal decision is 𝑑2 := 1. Mind that

this is always possible thanks to Assumption 9. Then, we define

the mixture of local interventions 𝜎 (𝑞) := 𝑞𝜎0 + (1 − 𝑞)𝜎′. Fig-
ure 4 shows how the expected utility of both decisions varies with

𝑞. We can sample 𝑞 uniformly in the interval [0, 1] 𝑁 times and

each time query the optimal policy oracle. Each time the oracle

returns an optimal decision for the intervention 𝜎′ we increment

a counter 𝜃 . Then 𝜃
𝑁

is an unbiased estimate for 𝑞𝑐𝑟𝑖𝑡 . For this

example, 𝑞𝑐𝑟𝑖𝑡 =
5

7
.

Step 4: We now compute 𝑃 (𝐴 = 0|𝑝𝑎𝐴;𝜎0). We start with 𝐴 = 0

and 𝐵 = 0, we first need to compute 𝛽 (𝐴 = 0) and 𝛽 (𝐴 = 1). This is

Figure 4: Following Example 1, let us examine two interven-
tions: 𝜎0 := 𝑑𝑜 (𝐵 = 0) with optimal decision 𝑑1, and a hard
intervention 𝜎′ with optimal decision 𝑑2 where 𝑑1 ≠ 𝑑2. We
define amixture of local interventions as 𝜎 (𝑞) = 𝑞𝜎0+(1−𝑞)𝜎′.
The plot displays the expected utility of both decisions as 𝑞
varies. The point where both decisions become simultane-
ously optimal is called 𝑞𝑐𝑟𝑖𝑡 .

the case where the node for which we are computing the CPT is the

first on the directed path to the utility node. So the beta expressions

are:

𝛽 (𝐴 = 0) = 𝑈 (𝑑2, 0) −𝑈 (𝑑1, 0) = −1 (8)

𝛽 (𝐴 = 1) = 𝑈 (𝑑2, 1) −𝑈 (𝑑1, 1) = 1 (9)

Following Equation 7:

𝑃 (𝐴 = 0|𝐵 = 0;𝜎) =
(1 − 7

5
) [𝑈 (𝑑2, 1) −𝑈 (𝑑1, 1)] − 𝛽 (𝑎′)

𝛽 (𝑎) − 𝛽 (𝑎′) (10)

=

2

5
[𝑈 (1, 1) −𝑈 (0, 1)] + 1

2

=
7

10

(11)

Which corresponds to the value in the table of Figure 3.

Step 5: We can repeat the same procedure for 𝜎 := 𝑑𝑜 (𝐵 = 1)
and find that 𝑃 (𝐴 = 0|𝑑𝑜 (𝐵 = 1)) = 𝑃 (𝐴 = 0|𝐵 = 1) = 0.1. The

equivalence between intervention and conditioning follows the spe-

cific family of interventions we are using (i.e., hard interventions

on all nodes that are not on the directed path to the utility node).

Step 6: Since 𝑃 (𝐴 = 0|𝑑𝑜 (𝐵 = 0)) ≠ 𝑃 (𝐴 = 0|𝑑𝑜 (𝐵 = 1)), we can
conclude that 𝐵 is a parent of 𝐴. In the general case, this approach

ensures that 𝐵 is not just an ancestor but indeed a parent of 𝐴,

because the intervention blocks all other paths from 𝐵 to 𝐴. Thus,

𝑃 (𝐴 = 0|𝑑𝑜 (𝐵 = 0), 𝑝𝑎𝐴) would equal 𝑃 (𝐴 = 0|𝑝𝑎𝐴) if 𝐵 were not

a parent.



𝑈

𝑌

𝑋𝐷1 𝐷2

𝑍

Figure 5: A multi-decision CID that represents an environ-
ment where two agents cooperate to maximize the utility𝑈 .
The edges marked in red are unknown. Example 2 demon-
strates how to adapt this CID to apply Algorithm 1 and re-
cover the missing edges and CPTs for chance nodes.

As expected, this process allows us to learn both the correct

graph structure and the CPT for 𝐴 (and, more generally, for all

chance nodes that are not children of 𝐷).

3.3 Example 2 - Cooperative multi-agent
environment

Examine the multi-decision CID in Figure 5. It represents a cooper-

ative game between two agents, each controlling a distinct decision

variable. Both agents aim to maximize a shared utility function, 𝑈 ,

and operate in different contexts defined by the parent sets of their

decision nodes (𝑃𝑎𝐷1
= ∅ ≠ {𝑍 } = 𝑃𝑎𝐷2

). Similarly to before, we

assume knowledge of the children for the decision node 𝐷1, their

CPTs, their parents, and the utility function associated with the

node𝑈 .

Overview of Methodology. Even if LearnCID can be applied only

to single-decision CIDs, we propose two approaches to handle

multi-decision CIDs. In both cases having access to an optimal

policy oracle for one decision will let us recover the full causal

structure and the CPT of all chance nodes. For both approaches

there is one decision node that we will refer to as the primary

decision node, which follows the same assumptions as the single-

decision case, i.e., we assume to know its children, their CPTs, and

their parents. We will refer to the other decision nodes as secondary

decision nodes. The first approach requires knowing the parent sets

of all secondary decision nodes. Then, we define a faithful policy for

each of these nodes. This is feasible because we know the parent set

for each decision node. Then we treat these nodes as chance nodes

by using their policies as CPTs. With an optimal policy oracle for

the primary decision node, we can apply Algorithm 1 to learn the

CID structure and CPTs for all chance nodes except the children of

the primary decision node. The second approach does not require

knowledge of secondary decision nodes’ parent sets, Instead, it

assumes that each of these nodes corresponds to a fixed, unknown,

faithful policy. Finally, we assume the availability of an optimal

policy oracle and apply Algorithm 1 to recover the full CID. Once

the CPTs for all chance nodes are learned, it becomes possible to

determine the optimal policy for every decision node in the original

graph under any distribution shift [2, 6, 18].

Example Analysis. Let Π∗Σ be the optimal policy oracle for 𝐷1

and 𝜋 (𝐷2 | 𝑍 ) be any given policy that governs 𝐷2. The nodes

for which we need to learn the parents are 𝑌 and 𝑍 . Node 𝑌 ’s

potential parents are 𝑋 and 𝑍 , whereas node 𝑍 ’s only potential

parent is𝑌 . Using Algorithm 1, we determine parental relationships

as follows: consider the instantiation 𝑌 = 0. With Algorithm 1 we

can compute 𝑃 (𝑌 = 0 | 𝑝𝑎𝑌 ;𝜎0) and 𝑃 (𝑌 = 0 | 𝑝𝑎𝑌 ;𝜎′0) using
𝜎0 := 𝑑𝑜 (𝑋 = 0, 𝑍 = 0), and 𝜎′

0
:= 𝑑𝑜 (𝑋 = 0, 𝑍 = 1) respectively.

We observe that these two probabilities are equal. We repeat this

process with 𝜎1 := 𝑑𝑜 (𝑋 = 1, 𝑍 = 0) and 𝜎′
1
:= 𝑑𝑜 (𝑋 = 1, 𝑍 = 1),

and again, 𝑃 (𝑌 = 0 | 𝑝𝑎𝑌 ;𝜎1) = 𝑃 (𝑌 = 0 | 𝑝𝑎𝑌 ;𝜎′1). Performing

the same procedure for 𝑌 = 1, we find that all pairs of interventions

yield the same probabilities. Therefore, 𝑍 is not a parent of 𝑌 . Next,

we check whether𝑋 is a parent of𝑌 . Comparing 𝑃 (𝑌 = 𝑦 | 𝑝𝑎𝑌 ;𝜎0)
with 𝑃 (𝑌 = 𝑦 | 𝑝𝑎𝑌 ;𝜎1), and 𝑃 (𝑌 = 𝑦 | 𝑝𝑎𝑌 ;𝜎′0) with 𝑃 (𝑌 =

𝑦 | 𝑝𝑎𝑌 ;𝜎′1) for all 𝑦 ∈ {0, 1}, we find that at least one of these

pairs of probabilities differs. Given the faithfulness of the CID. This

confirms that 𝑋 is a parent of 𝑌 . Finally, we consider 𝑍 . Since the

only potential parent of 𝑍 was 𝑌 , and 𝑌 was found to be a child of

𝑋 , 𝑌 can not be a child of 𝑍 because this would introduce a cycle in

the graph. 𝑍 has no other potential parents and therefore we have

learned the full CID.

Algorithmic Complexity. First consider that the complexity of

LearnCID depends on the complexity of querying the policy oracle,

let us call this complexity 𝐾 . As a worst-case scenario there is no

prior knowledge about the graph, so 𝑉𝑘𝑛𝑤 is empty. Let 𝑛 be the

number of variables, and 𝑏 := max𝑋 ∈𝐶 | Im(𝑋 ) | be the maximum

number of observable values of any chance variable. The most

computationally expensive steps correspond to computing 𝑞𝑐𝑟𝑖𝑡
with 𝐴𝐿𝐺𝑞𝑐𝑟𝑖𝑡 (line 10) and the CPTs’ entries for all the chance

nodes. Each call to 𝐴𝐿𝐺𝑞𝑐𝑟𝑖𝑡 costs 𝑂 (𝑁 (𝐾 + | Im(𝐷) |)), filling one
CPT’s entry costs 𝑂 (𝑛𝑏𝑛). Overall the algorithm’s time complexity

is 𝑂 (𝑛2𝑏𝑛𝑁 (𝐾 + | Im(𝐷) |) + 𝑛3𝑏2𝑛).

3.4 Applying LearnCID to Partially Observable
Markov Decision Processes

In this section, we demonstrate that under mild assumptions, given

a Partially Observable Markov Decision Process (POMDP) [10] with

unknown state-transition function 𝑇 and states described by a fi-

nite set of discrete variables, the availability of an optimal policy

oracle allows Algorithm 1 to be applied to learn both the intra- and

inter-temporal causal structure, as well as the CPTs of all variables

and the state-transition function.

Let 𝑀 = (𝑆,A,𝑇 , 𝑅,Ω,𝑂,𝛾) be a POMDP where 𝑆 is the set of

states, 𝐴 the set of actions/decisions, 𝑇 : 𝑆 ×𝐴→ Π(𝑆) is the state-
transition function whereΠ(𝑆) is the set of probability distributions
over the set of states, 𝑅 : 𝑆×𝐴→ R is a reward function, Ω is the set

of observables (values of observable variables),𝑂 is the set of condi-

tional observation probabilities, and𝛾 ∈ [0, 1) is the discount factor.

We assume time-homogeneity, meaning the transition probabil-

ities do not change over time. Moreover, we assume the set of

observable variables is fixed and the agent gets an observation

from these variables at every timestep. Formally, each state 𝑠 in 𝑆



is described by a finite set of variables 𝑉 (i.e., there exists a bijec-

tive function 𝑓 : Im(𝑉 ) → 𝑆), there exists a subset of observable

variables Vo ⊂ V, and for every state 𝑠 in 𝑆 and every action 𝑎 in 𝐴

it holds that 𝑂 (𝑠, 𝑎, 𝑣𝑜 ) = 1, where 𝑣𝑜 is the instantiation of the ob-

servable variables at the current state. Then we can model the state

space of a POMDP using a CID. Mind that under our assumptions

about the set of conditional observation probabilities, if the set of

observable variables coincides with the set of all state variables

then we get a Markov Decision Process (MDP) as a special case of

a POMDP. By identifying the observable variables of the POMDP

as the parents of decision nodes, the reward function as the utility

function associated with a utility node, and all other unobserved

variables as chance nodes that are not parents of decision nodes,

we can observe that a POMDP can be seen as a CID unrolled over

time.

The mapping from a POMDP to a CID with unknown structure

is described in Algorithm 2. Since we want to apply Algorithm 1

to this CID, we further need to assume each variable is discrete,

the POMDP reward directly depends on the action (equivalent to

𝐷 ∈ 𝑃𝑎𝑈 ). In this case, we have a slightly weaker condition for

the Markov blanket of the decision node: other than the parents

of 𝐷 , we only need to know which chance nodes are children of

𝐷 at the same timestep, their CPTs, and their parents, while we

can ignore the chance nodes that are children of 𝐷 in the following

timesteps (e.g., considering the POMDP described in Figure 6, we

do not need to know that 𝑋𝑡+1 is a child of 𝐷𝑡 because they belong

to different timesteps). Due to the Markov property of POMDPs,

direct causal relationships are limited to occurring either within a

single timestep or from variables at one timestep to those at the

next. This temporal constraint provides an advantage over standard

LearnCID applications: when analyzing POMDPs, we only need to

identify the decision node’s children within the same timestep, and

can safely ignore children in subsequent timesteps.

Algorithm 2 POMDPtoCID

Input: POMDP (𝑆,A,𝑇 , 𝑅,Ω,𝑂,𝛾) with unknown state-transition

function 𝑇 , and states described by a finite set of variables V.
Output: Correspondent CID’s graph 𝐺 without causal arcs

involving chance nodes.

1: Add decision node 𝐷𝑡 to CID’s graph 𝐺 with A as set of deci-

sions.

2: Add chance node 𝐷𝑡−1 to CID’s graph 𝐺 .

3: for each variable 𝑉 ∈ V do
4: Add chance node corresponding to random variable𝑉𝑡 and

𝑉𝑡−1 to CID’s graph 𝐺 .

5: if 𝑉 ∈ Vo then
6: Add edge (𝑉𝑡 , 𝐷𝑡 ) and (𝑉𝑡−1, 𝐷𝑡−1) to CID’s graph 𝐺 .

7: DefineU : Im(𝑉 ) × Im(𝐷) → R asU(𝑣, 𝑑) ↦→ R(𝑓 (𝑣), 𝑑) for
all 𝑑 ∈ Im(𝐷) and 𝑣 ∈ Im(𝑉 )

8: Add utility node𝑈𝑡 with utility functionU to 𝐺 .

9: Add edge (𝐷𝑡 ,𝑈𝑡 ) with utility functionU to 𝐺 .

10: Return CID’s graph 𝐺 .

We can run LearnCID on the CID produced by Algorithm 2 to

learn the causal relationships for variables both at the same time

step and at different ones. The algorithm maps the variables, deci-

sions, and rewards related to two consecutive timesteps to nodes of

a CID. We now refer to these timesteps as 𝑡 − 1 and 𝑡 . Therefore, for
each variable 𝑋 partially describing the state of the POMDP, this

newly defined CID contains two variables 𝑋𝑡−1 and 𝑋𝑡 . Similarly,

there will be two decision nodes 𝐷𝑡−1 and 𝐷𝑡 and two utility nodes

𝑈𝑡−1 and 𝑈𝑡 . Observe that we can prune 𝑈𝑡−1, and, similarly to

what we proposed for multi-agent settings, we convert 𝐷𝑡−1 to a
chance node and assign any faithful policy as its CPT. This is pos-

sible because the chance nodes that are parents of decision nodes

correspond to the observable variables which are known. Then,

if the assumptions of LearnCID are satisfied, including having an

optimal policy oracle available, then we can use it to learn all the

missing causal relationships. For time-homogeneous POMDP, like

in the example illustrated in Figure 6, this is sufficient to learn all

the intra- and inter-temporal causal relationships of variables in

𝐴𝑛𝑐𝑈𝑡
∪ 𝐴𝑛𝑐𝐷𝑡

for any timestep since they do not change when

varying 𝑡 because this would imply a change in the transition prob-

ability which contradicts the time-homogeneity assumption.

Learning the state-transition function. Once we have learned the

CPTs for all the chance nodes and we have fixed a policy 𝜋 for

the agent, it is possible to recover the state-transition function 𝑇 ,

i.e., for all states 𝑠 ∈ 𝑆 and actions 𝑎 ∈ 𝐴 we can find a probability

distribution over the state of the process at the following timestep.

Let 𝑉
(𝑡 )
1

, . . . ,𝑉
(𝑡 )
𝑛 be the variables V associated with the chance

nodes at timestep 𝑡 do that we observe that:

𝑇 (𝑠 (𝑡−1) , 𝑎 (𝑡−1) ) = 𝑃 (𝑠 (𝑡 ) |𝑠 (𝑡−1) , 𝑎 (𝑡−1) )

= 𝑃 (𝑉 (𝑡 )
1

, . . . ,𝑉
(𝑡 )
𝑛 |𝑣 (𝑡−1)

1
, . . . , 𝑣

(𝑡−1)
𝑛 , 𝑎 (𝑡−1) )

=
∏

𝑖 |𝑉𝑖 ∈𝐶ℎ𝐷

∑︁
𝑑∈A

𝑃 (𝑉 (𝑡 )
𝑖
|𝑝𝑎𝑉𝑖 , 𝑑)𝜋 (𝑑 |𝑝𝑎𝐷 )

∏
𝑖 |𝑉𝑖 ∈V\𝐶ℎ𝐷

𝑃 (𝑉 (𝑡 )
𝑖
|𝑝𝑎𝑉𝑖 )

(12)

Since all the CPTs are known and the policy is fixed, we can com-

pute the state-transition function for all states and actions.

Non time-homogeneous case. For non-time-homogeneous POMDPs,

applying this approach directly only allows us to learn the causal re-

lationships for two consecutive timesteps, since the time-dependance

of the state-transition function may modify the mechanisms gov-

erning the interactions between variables at different timesteps.

For instance, suppose each timestep represents a day of the year,

and an agent controls an irrigation system for a farm. During the

dry season, activating the irrigation system directly increases soil

moisture, but during the rainy season, rainfall already saturates

the soil, making the irrigation system’s effect negligible. Applying

Algorithm 2 followed by Algorithm 1 to two consecutive rainy-

season days would suggest that irrigation and soil moisture are

independent, a conclusion that would not hold during the dry sea-

son. One solution is to augment the state space of the POMDP to

make it time-homogeneous [15]. Alternatively, to comprehensively

learn the causal graph across all timesteps, we would need to apply



𝑌𝑡−1

𝑋𝑡−1

𝐷𝑡−1

𝑈𝑡−1

𝑌𝑡

𝑋𝑡

𝐷𝑡

𝑈𝑡

· · ·

· · ·

𝑌𝑡−1

𝑋𝑡−1

𝐷𝑡−1

𝑌𝑡

𝑋𝑡

𝐷𝑡

𝑈𝑡

Figure 6: Example of an application of Algorithm 2 and Algorithm 1 (LearnCID) to a time-homogeneous POMDPs. On the left,
a time-homogeneous POMDP where each state is described by a CID. On the right, the corresponding CID with unknown edges
marked in red. To apply LearnCID we consider two timesteps 𝑡 − 1 and 𝑡 , and the decision node 𝐷𝑡 with utility node𝑈𝑡 . We pick
any faithful policy for 𝐷𝑡−1 and turn it into a chance node, we can prune𝑈𝑡−1. Since the POMDP is time-homogeneous both the
intra- and inter-temporal causal relationships are preserved for any timestep thus we learn the causal graph for the entire
POMDP.

this procedure repeatedly for each timestep. This repetition may be

practical for POMDPs that are non-time-homogeneous only over a

finite time period or that exhibit periodic behavior, as in the given

example. For cases where time homogeneity doesn’t hold across

a finite number of timestep intervals, we can use an alternative

approach. First, map each interval to a single CID. Then, prune all

utility nodes except those corresponding to the last timestep of each

interval. Finally, apply our proposed solution for multi-decision

CIDs to each individual interval. However, in general, all of these

approaches impose different requirements on the optimal policy

oracle. Specifically, using the augmented POMDP requires an op-

timal policy oracle capable of handling interventions on the time

variable, whereas the other approaches generally require a distinct

optimal policy oracle for every pair or interval of timesteps.

4 CONCLUSIONS
In this work, we addressed the challenge of understanding the rela-

tionship between robustness to distribution shifts and an agent’s

causal understanding of the environment in which it operates.

While previous work established that robust agents encode the

causal model in single-agent, unmediated tasks, we demonstrated

that this connection also holds in mediated tasks and multi-agent

settings.We presented an algorithm for learning CIDs using optimal

policy oracles, which allows the integration of prior causal knowl-

edge. Our results show that even for mediated tasks, where agents’

actions affect the environment, it is possible to recover the underly-

ing causal structure. Moreover, in multi-agent systems, we showed

how a single robust agent enables the discovery of the complete

causal model, making it possible to learn optimal policies for all the

other agents under any distribution shift. Finally, we applied our

approach to POMDPs, demonstrating its ability to recover intra-

and inter-temporal causal relationships and the state-transition

function, even in non-time-homogeneous settings. These findings

provide a solid foundation for the development of AI systems that

can adapt and learn in complex settings. To bridge the gap between

theory and practical applications, we are actively extending our

research to approximate settings, where regret-bounded policies

are employed instead of optimal ones.

REFERENCES
[1] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman,

and Dan Mané. 2016. Concrete Problems in AI Safety. (06 2016). https://doi.org/

10.48550/arXiv.1606.06565

[2] Elias Bareinboim, Juan D. Correa, Duligur Ibeling, and Thomas Icard. 2022.

On Pearl’s Hierarchy and the Foundations of Causal Inference (1 ed.). Associ-

ation for Computing Machinery, New York, NY, USA, 507–556. https://doi-

org.oregonstate.idm.oclc.org/10.1145/3501714.3501743

[3] Elias. Bareinboim, Junzhe Zhang, and Sanghack Lee. 2024. Towards Causal
Reinforcement Learning. Technical Report R-65. Causal Artificial Intelligence Lab,
Columbia University.

[4] Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. 2006. Anal-

ysis of representations for domain adaptation. In Proceedings of the 19th Interna-
tional Conference on Neural Information Processing Systems (Canada) (NIPS’06).
MIT Press, Cambridge, MA, USA, 137–144.

[5] Tom Everitt, Ryan Carey, Eric D. Langlois, Pedro A. Ortega, and Shane Legg. 2021.

Agent Incentives: A Causal Perspective. Proceedings of the AAAI Conference on
Artificial Intelligence 35, 13 (May 2021), 11487–11495. https://doi.org/10.1609/

aaai.v35i13.17368

[6] Lewis Hammond, James Fox, Tom Everitt, Alessandro Abate, and Michael

Wooldridge. 2021. Equilibrium Refinements for Multi-Agent Influence Diagrams:

Theory and Practice. In Proceedings of the 20th International Conference on Au-
tonomous Agents and MultiAgent Systems (Virtual Event, United Kingdom) (AA-
MAS ’21). International Foundation for Autonomous Agents and Multiagent

Systems, Richland, SC, 574–582.

[7] David Heckerman. 1995. A Bayesian approach to learning causal networks. In

Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence
(Montréal, Qué, Canada) (UAI’95). Morgan Kaufmann Publishers Inc., San Fran-

cisco, CA, USA, 285–295.

[8] Dan Hendrycks, Nicholas Carlini, John Schulman, and Jacob Steinhardt. 2021.

Unsolved Problems in ML Safety. https://doi.org/10.48550/arXiv.2109.13916

[9] Ronald A. Howard and James E. Matheson. 1984. Influence Diagrams. Readings
on the Principles and Applications of Decision Analysis, Vol. II (1984).

[10] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. 1998. Plan-

ning and acting in partially observable stochastic domains. Artificial Intelligence
101, 1 (1998), 99–134. https://doi.org/10.1016/S0004-3702(98)00023-X

[11] Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtarik,

Ananda Theertha Suresh, and Dave Bacon. 2016. Federated Learning: Strategies

for Improving Communication Efficiency. In NIPS Workshop on Private Multi-
Party Machine Learning. https://arxiv.org/abs/1610.05492

https://doi.org/10.48550/arXiv.1606.06565
https://doi.org/10.48550/arXiv.1606.06565
https://doi-org.oregonstate.idm.oclc.org/10.1145/3501714.3501743
https://doi-org.oregonstate.idm.oclc.org/10.1145/3501714.3501743
https://doi.org/10.1609/aaai.v35i13.17368
https://doi.org/10.1609/aaai.v35i13.17368
https://doi.org/10.48550/arXiv.2109.13916
https://doi.org/10.1016/S0004-3702(98)00023-X
https://arxiv.org/abs/1610.05492


[12] Sinno Jialin Pan and Qiang Yang. 2010. A Survey on Transfer Learning. IEEE
Transactions on Knowledge and Data Engineering 22, 10 (2010), 1345–1359. https:

//doi.org/10.1109/TKDE.2009.191

[13] Judea Pearl. 2009. Causality: Models, Reasoning and Inference (2nd ed.). Cambridge

University Press, USA.

[14] Judea Pearl and Elias Bareinboim. 2011. Transportability of Causal and Statistical

Relations: A Formal Approach. In 2011 IEEE 11th International Conference on Data
Mining Workshops. 540–547. https://doi.org/10.1109/ICDMW.2011.169

[15] Martin L. Puterman. 2005 - 1994. Markov decision processes : discrete stochastic

dynamic programming.

[16] Jonathan Richens and Tom Everitt. 2024. Robust agents learn causal world

models. In The Twelfth International Conference on Learning Representations.
https://openreview.net/forum?id=pOoKI3ouv1

[17] Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal

Kalchbrenner, Anirudh Goyal, and Yoshua Bengio. 2021. Toward Causal Repre-

sentation Learning. Proc. IEEE 109, 5 (2021), 612–634. https://doi.org/10.1109/

JPROC.2021.3058954

[18] Ross D. Shachter. 1986. Evaluating Influence Diagrams. Oper. Res. 34, 6 (Dec.
1986), 871–882.

[19] Peter Spirtes. 2001. An Anytime Algorithm for Causal Inference. In Proceedings of
the Eighth International Workshop on Artificial Intelligence and Statistics (Proceed-
ings of Machine Learning Research, Vol. R3), Thomas S. Richardson and Tommi S.

Jaakkola (Eds.). PMLR, 278–285. https://proceedings.mlr.press/r3/spirtes01a.html

Reissued by PMLR on 31 March 2021.

[20] Peter Spirtes and Clark Glymour. 1991. An algorithm for fast recovery of sparse

causal graphs. Social science computer review 9, 1 (1991), 62–72.

[21] Peter Spirtes, Clark Glymour, N Scheines, et al. 1991. Causation, Prediction, and

Search. (1991).

[22] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu

Zhu, Hui Xiong, and Qing He. 2021. A Comprehensive Survey on Transfer

Learning. Proc. IEEE 109, 1 (2021), 43–76. https://doi.org/10.1109/JPROC.2020.

3004555

https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/ICDMW.2011.169
https://openreview.net/forum?id=pOoKI3ouv1
https://doi.org/10.1109/JPROC.2021.3058954
https://doi.org/10.1109/JPROC.2021.3058954
https://proceedings.mlr.press/r3/spirtes01a.html
https://doi.org/10.1109/JPROC.2020.3004555
https://doi.org/10.1109/JPROC.2020.3004555

	Abstract
	1 Introduction
	2 Problem setup
	3 Main results
	3.1 LearnCID Algorithm
	3.2 Example 1 - Single agent environment
	3.3 Example 2 - Cooperative multi-agent environment
	3.4 Applying LearnCID to Partially Observable Markov Decision Processes

	4 Conclusions
	References

