
Improving Option Learning with Hindsight Experience Replay
Gabriel Romio

gromio@edu.unisinos.br
Univesidade do Vale do Rio dos Sinos

São Leopoldo, RS, Brazil

Mateus Begnini Melchiades
mateusbme@edu.unisinos.br

Univesidade do Vale do Rio dos Sinos
São Leopoldo, RS, Brazil

Gabriel de Oliveira Ramos
gdoramos@unisinos.br

Univesidade do Vale do Rio dos Sinos
São Leopoldo, RS, Brazil

ABSTRACT
Algorithms such as Option-Critic (OC) [2] and Multi-updates Op-
tion Critic (MOC) [6] have introduced significant advancements in
the discovery and autonomous learning of options. However, these
methods still tend to underperform in multi-goal environments or
those with sparse rewards. In this work, we propose the integration
of Hindsight Experience Replay (HER) [1] into MOC to enhance
performance in these scenarios. To achieve this, the algorithm se-
lects new goals based on previously reached states. The rewards
for already completed iterations are then recalculated, leveraging
even unsuccessful trajectories as if the intended objective had been
achieved. Our method, which we refer to as MOC-HER, success-
fully solved multi-goal environments with sparse rewards, where
traditional Hierarchical Reinforcement Learning algorithms failed.
Additionally, when testing our algorithm in the same environments
with dense rewards, we observed significant improvements over
the original MOC.

KEYWORDS
Reinforcement Learning, Sparse Rewards,Multi-Goal Environments,
Options Framework, Temporal Abstraction

1 INTRODUCTION
The concept of Hierarchical Reinforcement Learning aims to struc-
ture complex tasks into more manageable sub-tasks [9]. In this
context, the Options framework enables the reuse of learned skills
between different problems, thus accelerating the training pro-
cess [9]. These options are closed-loop policies capable of executing
a complete action over an extended period of time. Examples of
options include tasks like picking up an object, or traveling from
one city to another, while primitive actions are more fundamental
operations, such as muscle twitches or applying electrical current
to a motor.

Recently, methods for automatically discovering and learning op-
tions have been developed to improve and accelerate training, with a
focus on generating and diversifying options. The automatic search
for options was enhanced with the Option-Critic framework [2],
while Asynchronous Advantage Option-Critic (A2OC) [4] imple-
mented the deliberation cost to improve and bring greater sta-
bility to the use of options. Proximal Policy Option-Critic (PPOC) [5]
was one of the first to achieve good results in tasks with continu-
ous action spaces. The Multi-updates Option Critic (MOC) frame-
work [6] introduced simultaneous updates of various options, signif-
icantly improving performance in high-complexity environments.
This method has also proven effective in preventing options with
degenerate solutions. More recently, Dynamic Option Creation [7]

Proc. of the Adaptive and Learning Agents Workshop (ALA 2025), Avalos, Aydeniz,
Müller, Mohammedalamen (eds.), May 19 – 20, 2025, Detroit, Michigan, USA, ala-
workshop.github.io. 2025.

proposes an approach for dynamically creating new options during
the training process. However, high-complexity tasks with sparse
rewards remain a significant challenge in the context of Hierar-
chical Reinforcement Learning. The Hindsight Experience Replay
(HER) algorithm [1], by recalculating rewards from failed trajecto-
ries through a replay buffer, introduced significant improvements
in handling sparse rewards in multi-goal environments.

Following this concept, we extend MOC with a HER-based func-
tion to handle intra-option learning within the MOC algorithm.
This method aims to improve or enable the discovery of options
in these environments in a straightforward approach. To achieve
this, we designed a replay buffer to store information about each
state transition from the original MOC, including the active option.
These states are then re-evaluated with a new goal, selected by one
of the states reached by the algorithm. The trajectory is reassessed
as if the objective had been to reach that state from the beginning,
thus the experience can be utilized even if the trajectory did not
achieve its original goal. Each state stored in the HER buffer has its
reward value recalculated based on the new goal. The HER buffer
is subsequently integrated into the MOC training buffer, becoming
part of the evaluation and learning phases of the algorithm. After
each learning step, the HER buffer is cleared. We refer to this en-
hanced framework as Multi-Updates Option Critic with Hindsight
Experience Replay (MOC-HER).

The main contribution of this work is the introduction of a novel
approach designed to solve multi-goal environments with sparse
rewards within the context of Hierarchical Reinforcement Learning.
Experimental evaluation shows that the combination of MOC and
HER methods leads to improved results. Specifically, our findings
show that the incorporation of HER enabled the resolution of sparse
reward environments that remain intractable with standard MOC,
achieving a reduction of up to 96.5% in negative reward in tested
cases. Additionally, even in environments with dense rewards, ap-
plying HER significantly improved both learning speed and final
performance. This resulted in a decrease of up to 38.1% in negative
reward in tested cases as compared to the original algorithm.

2 BACKGROUND
2.1 Options
AMarkov Decision Process (MDP) is traditionally based on the prin-
ciple that an agent takes an action 𝑎 at some state 𝑠 , taking a fixed
time 𝑡 and affecting the next state 𝑠′ and reward 𝑟 at the subsequent
time step 𝑡 + 1. Therefore, each MDP consists of a set of states 𝑆 , a
set of actions 𝐴, an expected reward 𝑟𝑎𝑠 for each state-action pair,
a transition probability over states 𝑃 , and a policy 𝜋 . In contrast,
Semi-Markov Decision Processes (SMDPs) [9] offer a framework to
incorporate temporal abstraction within MDPs in Reinforcement
Learning. Temporal abstraction involves considering actions or

sequences of actions across multiple time steps, treating them as
larger units that can be handled as single actions. Thus, SMDPs are
a variation of MDPs designed to model discrete-event systems in
continuous time, where actions have variable durations. In other
words, SMDP models represent temporally extended courses of
action. Each sub-policy representing one of these sets of actions,
available to the agent during training, is called an option.

The concept of options [9] involves extending a set of primitive
actions to include more elaborate courses of action. Then, an agent
can consider to build a policy to select options instead of primitive
actions. Each option consists of a policy 𝜋𝑜 : 𝑆 × 𝐴 → [0, 1],
a termination condition 𝛽 : 𝑆+ → [0, 1], and an initiation set
𝐼 ⊆ 𝑆 . Thus, an option (𝐼 , 𝜋, 𝛽) is available at a state 𝑠𝑡 only if that
state belongs to 𝐼 . Once an option is initiated, actions are chosen
according to policy 𝜋 until termination as sampled by 𝛽 , at which
point the agent can choose another option from those available for
𝑠𝑡 + 1.

2.2 Discovering and learning options
The Option-Critic architecture [2] introduced a method of leverag-
ing function approximation to autonomously discover and learn
options from scratch. This framework builds on the policy gradi-
ent theorem to learn internal policies and termination conditions
of options without the need for additional rewards or sub-goals.
However, the Option-Critic architecture updates only the option
active at any given time step. This limitation becomes particularly
problematic in more complex situations such as environments with
continuous action spaces. These cases often result in suboptimal
solutions or degenerate options, where certain options are selected
and updated at a significantly higher rate than others.

2.3 Multi-updates Option Critic
The Multi-updates Option Critic (MOC) algorithm [6] is based on
intra-option learning and aims to update all relevant options for a
given state without the need for additional estimators. Instead of
updating only the chosen option at a given state using the current
policy, MOC proposes updating all options that could potentially
be selected within that state. This results in temporally extended
options and prevents degenerate solutions, where certain options
are chosen much more frequently than others.

The execution and selection process for options can be described
as a call-and-return model. From a state 𝑠 , the agent chooses an
option 𝑜 according to a policy over options 𝜇. The action 𝑎 is then
determined by the corresponding intra-option policy 𝜋𝜁 (𝑎 |𝑠, 𝑜), pa-
rameterized by 𝜁 . A termination function 𝛽 (𝑠, 𝑜) defines the proba-
bility of ending the current option and selecting a new one. Along
this process, the agent collects and evaluates experience about the
environment, estimating a value function 𝑉 𝜋 (𝑠). Moreover, it pro-
vides an evaluation of the probability of each option being selected.

The MOC algorithm updates all relevant options simultaneously
by adjusting the option value functions 𝑄𝑂 (𝑠, 𝑜 ;𝜃), where 𝜃 repre-
sents the parameters to be adjusted. The learning step is performed
using previously collected experience, which contains transition
probabilities, selected actions, and their corresponding rewards.
Options other than the sampled one are updated through an off-
policy method using intra-option gradient rules, where the policy

𝜋𝜁 is adjusted to improve the agent’s performance based on past
experiences. Additionally, the update process also takes into ac-
count the state-option occupation distribution, which reflects how
frequently each state-action pair is visited by each option. The oc-
cupation distribution helps improve sampling efficiency and reduce
the variance of estimates, as updates are weighted by the relevance
of options within the observed states. The algorithm repeats this
process of updating the option value functions and intra-option
policies throughout training.

A potential issue with updating all options is the risk of reduc-
ing the diversity within the option set. To mitigate this, the MOC
introduces a hyperparameter 𝜂, which controls the probability of
updating all options. If 𝜂 is sufficiently high, the algorithm will up-
date all options. Otherwise, it will update only the sampled option.

2.4 Multi-Goal Reinforcement Learning
Multi-Goal Reinforcement Learning involves a set of continuous
control tasks based on existing robotic hardware [8]. These tasks
include sending an industrial robotic arm to a desired position or
interacting with objects in the environment. Other tasks involve
controlling an anthropomorphic robotic hand to move specific
fingers or manipulate an object, such as a block or a pen. All of
these environments feature a dynamic goal that changes after each
episode, which is encoded in the observation space. Thus, the ob-
servation space contains, in addition to the current environment
states, two new parameters: the desired goal, which represents
the target destination that the agent needs to reach, and achieved
goal, which represents the position the agent has reached at the
current time step.

The rewards can be computed as dense or sparse. In the dense
case, the reward is calculated by the environment based on the
Euclidean distance between the object and the goal. In the sparse
case, the agent receives a reward of 0 when the object is at the target
location and −1 in all other situations. In the latter case most RL
algorithms do not perform effectively, because the reward function
is extremely sparse and provides limited information. One way to
improve performance is through the implementation of Hindsight
Experience Replay (HER) [1].

The HER is an algorithm designed to re-examine failed trajec-
tories by redefining the desired goal. After completing an episode
𝑠0, 𝑠1, . . . , 𝑠𝑇 , each transition 𝑠𝑡 → 𝑠𝑡+1 is stored in a replay buffer.
During policy updates, alternative goals are introduced into this
buffer, defined through a strategy S for sampling goals for replay,
which can be final, future, or episode. The final strategy se-
lects the new desired goal based on the achieved position from the
last state of the episode. In the future strategy, the goal is randomly
chosen from any state between the current and final states of the
episode. Finally, the episode strategy selects a random state from
the current episode as the desired goal, which may be either later
or earlier than the current state. The rewards for this interaction
are recalculated as if the goal had always been the state of the new
goal selected. This approach enables the agent to gain valuable
insights about how to reach this state, which can be leveraged by
any off-policy Reinforcement Learning algorithm.

3 METHOD
In this work, we incorporated a HER buffer into the MOC frame-
work to improve its performance in multi-goal environments, par-
ticularly those characterized by sparse rewards. As described in the
algorithm presented in Section 3.1, our approach involves record-
ing data for each state transition into a replay buffer throughout
the agent’s interaction with the environment. This data includes
the obtained rewards and the selected options. Subsequently, new
goals are sampled from states reached by the agent. For each stored
transition in the buffer, the reward is recalculated based on the
newly defined goal. This allows failed trajectories to be used in the
learning process as though the intended goal had been achieved.
When starting the evaluation and learning steps of the algorithm,
the HER buffer is merged with the buffer containing the original
iteration trajectories, so that all data is utilized for training. After
these steps, the boot buffers are emptied. A detailed explanation of
the HER implementation in MOC is provided in Section 3.2.

3.1 Algorithm
We implemented HER into MOC in a minimally intrusive approach
to ensure all its benefits and improve its performance in sparse
reward environments. A description of our implementation is pro-
vided in Algorithm 1, which extends the original MOC algorithm [6]
with our HER integration. The algorithm outlines a simplified ver-
sion of the process, focusing on a single episode to provide a clearer
understanding of the overall approach. Our modifications to the
original algorithm begin at line 1 and 4, where we introduce the
initialization of the strategy S for sampling new goals for replay
at each state along the trajectory (𝑠0, . . . , 𝑠𝑇), the reward function
𝑟 (𝑠, 𝑎, 𝑔), and the HER buffer 𝑅. Additionally, component 1 of Al-
gorithm 1 (lines 15-19) includes the storage of transitions to new
states in the replay buffer. This process includes the selection of a
new goal, the calculation of the new reward based on this goal, and
the storage of the transition with the updated values in the HER
buffer (more details are provided in Section 3.2). This procedure is
applied to each state transition within the episode. Finally, in lines
25 and 32, the evaluation and improvement steps are repeated for
the corresponding transition from the HER buffer 𝑅, with the new
goal and recalculated reward.

3.2 Implementing HER into MOC
In this section, we provide detailed information about the HER
implementation. As previously mentioned, to improve MOC per-
formance in multi-goal RL environments, we devise a replay buffer
that is incremented after each time step. This buffer stores key
information about the decisions and current state, which will be
used for intra-option learning. This stored data includes the action
performed by the agent, the option number that executed the ac-
tion, the observed state, the resulting state, and the reward received
following the action. To integrate the replay buffer into MOC learn-
ing in a minimally intrusive manner and preserve the algorithm’s
original structure, all state transitions are sequentially inserted into
the HER buffer, maintaining the integrity of episodes.

At the end of each complete episode, the entire trajectory from
the replay buffer is revisited. To define the new goal we use the
strategy future from HER, adopted because it demonstrated the

Algorithm 1Multi-updates Option Critic with Hindsight Experi-
ence Replay
1: input: S (Strategy for sampling goals for replay, e.g. S(𝑠0, . . . , 𝑠𝑇)); 𝑟 (𝑠, 𝑎, 𝑔)

(Function to recalculate the rewards)
2: Set 𝑠 ← 𝑠0
3: Choose 𝑜 at 𝑠 according to 𝜇𝑧 (· |𝑠)
4: Initialize empty HER buffer 𝑅
5: repeat
6: Choose 𝑎 according to 𝜋𝜁 (𝑎 |𝑠, 𝑜)
7: Take action 𝑎 in 𝑠 , observe 𝑠′ , 𝑟
8: Sample termination from 𝛽𝜈 (𝑠′, 𝑜)
9: if 𝑜 terminates in 𝑠′ then
10: Sample 𝑜 ′ according to 𝜇𝑧 (· |𝑠′)
11: else
12: 𝑜 ′ = 𝑜

13: end if
14: Define previous option 𝑜 = 𝑜

15: 1. Hindsight Experience Replay:
16: Obtain the transition (𝑠, 𝑜, 𝑎, 𝑟, 𝑠′) from the latest step
17: 𝑠′goal ← S(current transition), where 𝑠′goal is the goal component of 𝑠′

18: Recalculate 𝑟 her based on the function 𝑟 (𝑠, 𝑎, 𝑔) for the new goal 𝑠′goal
19: Store transition (𝑠, 𝑜, 𝑎, 𝑟 her, 𝑠

′) in HER buffer 𝑅
20: 2. Evaluation step:
21: for each option 𝑜 in the option set𝑂 do
22: 𝛿 ← E[𝑈 𝜌 |𝑠, 𝑜] − 𝑄𝜃 (𝑠, 𝑜) where 𝑈 𝜌 is an importance sampling

weighted target
23: 𝜃 ← 𝜃 + 𝑝𝜇,𝛽 (𝑜 |𝑠, 𝑜)𝛼𝛿𝜙 (𝑠, 𝑜)
24: end for
25: Repeat the evaluation step for HER transition (𝑠, 𝑜, 𝑎, 𝑟 her, 𝑠

′)
26: 3. Improvement step:
27: for each option 𝑜 in the option set𝑂 do

28: 𝜁 ← 𝜁 + 𝑝𝜇,𝛽 (𝑜 |𝑠, 𝑜)𝛼𝜁
𝜕 log𝜋𝜁 (𝑎 |𝑠,𝑜)

𝜕𝜁
𝑄𝜃 (𝑠, 𝑜, 𝑎)

29: end for
30: 𝜈 ← 𝜈 − 𝛼𝜈

𝜕𝛽𝜈 (𝑠′,𝑜)
𝜕𝜈

(𝑄𝜃 (𝑠′, 𝑜) − 𝑉𝜃 (𝑠′))
31: 𝑧 ← 𝑧 + 𝛼𝑧𝛽𝜈 (𝑠′, 𝑜) 𝜕𝜇𝑧 (𝑜

′ |𝑠′)
𝜕𝑧

𝑄𝜃 (𝑠′, 𝑜 ′)
32: Repeat the improvement step for HER transition (𝑠, 𝑜, 𝑎, 𝑟 her, 𝑠

′)
33: until 𝑠′ is a terminal state

best performance in the original HER [1] and also in our preliminary
experiments. In this strategy the goal is randomly selected from any
state between the current and the final state of the actual episode.
Furthermore, a new goal is chosen for each transition. The reward is
then recalculated for each transition based on the new goal, utilizing
the environment’s reward function.

Finally, the revisited HER buffer is integrated into the buffer
containing the experiences of the original MOC iterations. Once
the desired batch size has been reached, the expanded buffer is used
for intra-option learning during the improvement step. After this
step, both buffers are cleared and the process is restarted throughout
the training.

4 EXPERIMENTS
We now present empirical results to validate our method, aiming
to show that MOC-HER: (1) handle multi-goal environments with
sparse rewards that MOC is unable to solve, (2) improves MOC
performance even in reward-dense environments, (3) maintains
the quality of the options discovered by MOC, avoiding degenerate
solutions.

4.1 Methodology
The goal of this work is to support the learning of options in envi-
ronments with continuous action spaces and sparse rewards. To vi-
sualize the results of this implementation, we applied theMOC-HER

algorithm to the FetchReach environment, available in Gymnasium
Robotics [8], using 2, 4, 8 and 16 options.

The FetchReach is a multi-goal environment that requires an
industrial robot to reach a pre-defined target location. The environ-
ment features a continuous action space with four possible actions,
each ranging from −1 to 1. The observation space contains 16 di-
mensions, with 3 values representing the achieved goal and 3 more
representing the desired goal, all of which can take values in the
range −∞ to∞. In sparse reward mode, the reward is 0 when the
robot reaches the goal, i.e., when the Euclidean distance between
the robot’s achieved goal and the desired goal position is less than
0.05. At all other positions, the reward is −1. This calculation, for-
mulated by the Gymnasium Robotics environments [3], is expressed
in Equation (1).

𝑟𝑠𝑝𝑎𝑟𝑠𝑒 =

{
0, if ∥achieved_goal − desired_goal∥2 < 0.05
−1, otherwise

(1)

In dense reward mode, the reward is discounted based on the
Euclidean distance between the robot’s achieved goal and the de-
sired goal, according to Equation (2). This formulation also follows
the framework of the Gymnasium Robotics environments.

𝑟𝑑𝑒𝑛𝑠𝑒 = − ∥achieved_goal − desired_goal∥2 (2)

An episode consists of 50 time steps, with the goal location
changing after each episode. Moreover, an episode never ends until
the predefined time steps are completed, so the algorithm must
not only guide the robot to the target position but also keep it
there. The experiments were performed for 10 random seeds, where
the mean obtained between them was recorded. It is important
to emphasize that the reward values were calculated based only
on the original trajectories, ensuring that HER does not lead to a
misleading evaluation of the results.

To measure and compare the performance improvement of MOC-
HER over MOC, we utilize the relative improvement (RI) metric.
This metric quantifies the percentage reduction in negative reward
achieved by our algorithm in each experiment, as detailed in Equa-
tion (3).

RI =
𝑟 MOC-HER − 𝑟 MOC

|𝑟 MOC |
× 100% (3)

Because of the simultaneous update of multiple options, the
MOC prevents low-quality options or those that are ignored after a
training period. Thus, we also aim to demonstrate that all options
are utilized throughout the interactions, so that the introduction
of HER does not compromise this characteristic of the MOC. To
ensure this, we generate and present the usage rate of each option
in these trajectories.

4.2 Numerical results
Our first experiment consists of comparing the results of MOC-HER
whith those obtained with the standard MOC in FetchReach with
sparse rewards, as in Equation (1). This is shown in Figure 1. An
iteration corresponds to the set of episodes that constitute each

Table 1: Rewards (and standard deviation) after 100 iterations
in the FetchReach environment with sparse rewards, and
relative improvement (RI) of MOC-HER compared to MOC

Algorithm 2 options 4 options 8 options 16 options

MOC-HER -1.71 (0.26) -1.93 (0.389) -2.77 (1.2) -5.38 (7.8)
MOC -49.9 (0.094) -49.88 (0.147) -49.82 (0.179) -49.88 (0.109)

RI 96.57% 96.13% 94.44% 89.21%

training batch used during learning. Each iteration contains 40
episodes, with 50 time steps per episode, totaling 2000 time steps
per iteration. The shaded areas represent the standard deviation.
The insights demonstrate a situation where the MOC algorithm,
regardless of the number of options, failed to identify a policy
capable of solving the environment during the analyzed iterations.
Conversely, MOC-HER found a solution quickly. It is noted that
the number of time steps to resolve the environment increases
according to the number of options. In addition, when the number
of options exceeds 8, the approach becomes increasingly unstable.
The obtained results demonstrate the benefits of implementing
the HER buffer and the potential advantages of trajectory reward
recalculation.

Figure 1: Results obtained for 2, 4, 8 and 16 options in the
FetchReach environment with sparse rewards

Table 1 compares the results obtained by both algorithms at the
end of each experiment with sparse rewards. It presents the numeri-
cal values, as well as the standard deviation, of the average rewards
from the last iteration for each variation in the number of options.
The last row reports the relative improvement of MOC-HER’s re-
sults compared to MOC, calculated according to Equation (3). As
the standard MOC failed to solve the environment, its rewards re-
mained near theminimumpossible value of−50. MOC-HER showed
the best performance in the experiment with 2 options, surpassing
MOC by 96.57% in terms of the RI metric. When the number of
options is increased, its performance gradually decreased. With
a high number of options, such as 16, there is a significant loss
in quality and greater variation in the results, demonstrating the
negative effects of having an excessive number of options.

Although the primary objective of this approach was to improve
performance in sparse environments, performance improvements
were also observed in multi-goal environments with dense reward

Table 2: Rewards (and standard deviation) after 100 iterations
in the FetchReach environment with dense rewards, and
relative improvement (RI) of MOC-HER compared to MOC

Algorithm 2 options 4 options 8 options 16 options

MOC-HER -0.89 (0.088) -0.93 (0.11) -1.05 (0.087) -1.33 (0.105)
MOC -1.44 (0.056) -1.49 (0.054) -1.61 (0.074) -1.84 (0.253)

RI 38.19% 37.58% 34.78% 27.61%

systems.We used the same FetchReach environment, but with dense
rewards, where the reward is calculated as shown in Equation (2).
In this scenario, MOC-HER outperformed the original MOC across
all tested numbers of options, as illustrated in Figure 2.

Figure 2: Results obtained for 2, 4, 8 and 16 options in the
FetchReach environment with dense rewards

The numerical comparison between MOC and MOC-HER in the
dense environment is presented in Table 2, which reports the mean
reward of the last iteration along with the standard deviation. In
this scenario, the improvements achieved by MOC-HER remain
significant, ranging from 27.61% to 38.19%, as measured by the
RI metric, with the best performance occurring when using the
minimum number of options. Although performance decreases as
the number of options increases for both algorithms, this decline
was less evident and more gradual in the dense reward environment
compared to the sparse reward case.

In this experiment the potential scalability of the algorithm is
demonstrated, indicating that MOC-HER is not restricted to envi-
ronments with sparse rewards or those with difficult solutions for
traditional algorithms. Moreover, it also shows that HER can be
effectively utilized to improve performance in environments with
varying characteristics and reward structures.

Finally, we must ensure that the introduction of HER into MOC
does not affect the quality of option discovery. Thus, we run the
algorithm using 10 different seeds and recorded the mean and
standard deviation of the usage rate for each option during training
with 2 and 4 options. Figure 3 presents the results for the FetchReach
environment with sparse rewards, while Figure 4 shows the results
for the same environment but with dense rewards.

When comparing the options under the same conditions, we can
observe that MOC-HER maintains a task split among options that
is comparable to the original MOC. With 2 options, both algorithms

(a) (b)

Figure 3: Percentage of usage of each option in the
FetchReach environment with sparse rewards

(a) (b)

Figure 4: Percentage of usage of each option in the
FetchReach environment with dense rewards

allocated each option to approximately half of the time steps in
both sparse and dense reward settings, as shown in Figure 3a and
Figure 4a. In the sparse reward environments, the standard MOC
failed to converge, leading to greater instability in the usage rate
of each option compared to the MOC-HER. In Figure 3b, when
increasing to 4 options in the sparse reward environment, some
options were selected significantly more than others. This result
suggests that the number of options may be overestimated, and a
smaller set of options might yield comparable performance. How-
ever, the algorithm assigned tasks to all options, ensuring that each
continued to be periodically utilized. A similar behavior occurs in
the original MOC algorithm. In the dense reward environment, as
illustrated in Figure 4b, the usage rate of each option was more
evenly distributed, suggesting that this reward structure facilitates
a more balanced task allocation by the algorithm.

5 CONCLUSION
In the present work, we proposed including Hindsight Experience
Replay in the MOC algorithm, aiming to improve its performance in
environments with extremely sparse or ill-defined binary rewards.
We observed a significant improvement in performance, allowing
learning in contexts where the standard MOC algorithm has been
unable to produce satisfactory results. Moreover, even in multi-goal
environments with continuous rewards, MOC-HER was able to
provide improvements over the original algorithm.

Despite initial positive results, additional tests are still needed to
evaluate the scalability of the algorithm. Future work could explore
the application of MOC-HER in additional experiments, particularly
in more complex environments, such as other robotic tasks involv-
ing greater interaction with objects and scenarios. Variations in the
size of the HER buffer could also be explored by limiting the pro-
portion of stored samples used during training, in order to analyze
how this impacts the learning process. A more thorough analysis
of different goal-sampling strategies could yield deeper insights
into their effects on performance. Moreover, incorporating HER
into other temporal abstraction algorithms, such as PPOC [5], may
provide valuable comparisons for evaluating the results obtained
with the proposed approach.

Finally, integrating Dynamic Option Creation [7] into MOC-HER
could offer significant advantages, permitting the evaluation and
adaptation of the number of options within a set. This approach
would not only optimize the selection of options by preventing over-
estimation but also enable the algorithm to dynamically identify
the most suitable and efficient set of options.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable feedback.
This research was partially supported by Conselho Nacional de De-
senvolvimento Científico e Tecnológico - CNPq (grants 443184/2023-
2, 313845/2023-9, and 445238/2024-0).

REFERENCES
[1] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong,

Peter Welinder, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wo-
jciech Zaremba. 2017. Hindsight Experience Replay. In Advances in Neu-
ral Information Processing Systems, I. Guyon, U. Von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Vol. 30. Cur-
ran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/file/
453fadbd8a1a3af50a9df4df899537b5-Paper.pdf

[2] Pierre-Luc Bacon, Jean Harb, and Doina Precup. 2017. The Option-Critic Architec-
ture. Proceedings of the AAAI Conference on Artificial Intelligence 31, 1 (Feb. 2017).
https://doi.org/10.1609/aaai.v31i1.10916

[3] Rodrigo de Lazcano, Kallinteris Andreas, Jun Jet Tai, Seungjae Ryan Lee, and
Jordan Terry. 2024. Gymnasium Robotics. http://github.com/Farama-Foundation/
Gymnasium-Robotics

[4] Jean Harb, Pierre-Luc Bacon, Martin Klissarov, and Doina Precup. 2018. When
Waiting Is Not an Option: Learning Options With a Deliberation Cost. Proceedings
of the AAAI Conference on Artificial Intelligence 32, 1 (Apr. 2018). https://doi.org/
10.1609/aaai.v32i1.11831

[5] Martin Klissarov, Pierre-Luc Bacon, Jean Harb, and Doina Precup. 2017. Learnings
Options End-to-End for Continuous Action Tasks. arXiv:1712.00004 [cs.LG]
https://arxiv.org/abs/1712.00004

[6] Martin Klissarov and Doina Precup. 2021. Flexible Option Learning. In Ad-
vances in Neural Information Processing Systems, M. Ranzato, A. Beygelzimer,
Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (Eds.), Vol. 34. Curran Asso-
ciates, Inc., 4632–4646. https://proceedings.neurips.cc/paper_files/paper/2021/
file/24cceab7ffc1118f5daaace13c670885-Paper.pdf

[7] Mateus Begnini Melchiades, Gabriel De Oliveira Ramos, and Bruno Castro Da
Silva. 2025. Dynamic Option Creation in Option-Critic Reinforcement Learning.
In Proceedings of the 2025 International Conference on Autonomous Agents and

Multiagent Systems (Detroit, United States of America) (AAMAS ’24). International
Foundation for Autonomous Agents and Multiagent Systems.

[8] Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen
Baker, Glenn Powell, Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welin-
der, Vikash Kumar, and Wojciech Zaremba. 2018. Multi-Goal Reinforce-
ment Learning: Challenging Robotics Environments and Request for Research.
arXiv:1802.09464 [cs.LG] https://arxiv.org/abs/1802.09464

[9] Richard S. Sutton, Doina Precup, and Satinder Singh. 1999. Between MDPs and
semi-MDPs: A framework for temporal abstraction in reinforcement learning.
Artificial Intelligence 112, 1 (1999), 181–211. https://doi.org/10.1016/S0004-3702(99)
00052-1

https://proceedings.neurips.cc/paper_files/paper/2017/file/453fadbd8a1a3af50a9df4df899537b5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/453fadbd8a1a3af50a9df4df899537b5-Paper.pdf
https://doi.org/10.1609/aaai.v31i1.10916
http://github.com/Farama-Foundation/Gymnasium-Robotics
http://github.com/Farama-Foundation/Gymnasium-Robotics
https://doi.org/10.1609/aaai.v32i1.11831
https://doi.org/10.1609/aaai.v32i1.11831
https://arxiv.org/abs/1712.00004
https://arxiv.org/abs/1712.00004
https://proceedings.neurips.cc/paper_files/paper/2021/file/24cceab7ffc1118f5daaace13c670885-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/24cceab7ffc1118f5daaace13c670885-Paper.pdf
https://arxiv.org/abs/1802.09464
https://arxiv.org/abs/1802.09464
https://doi.org/10.1016/S0004-3702(99)00052-1
https://doi.org/10.1016/S0004-3702(99)00052-1

	Abstract
	1 Introduction
	2 Background
	2.1 Options
	2.2 Discovering and learning options
	2.3 Multi-updates Option Critic
	2.4 Multi-Goal Reinforcement Learning

	3 Method
	3.1 Algorithm
	3.2 Implementing HER into MOC

	4 Experiments
	4.1 Methodology
	4.2 Numerical results

	5 Conclusion
	Acknowledgments
	References

